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ABSTRACT 
 

Use of an Animal Model to Explore Prenatal Predictors of Insulin and Glucose 
Metabolism in Southwestern Alaskan Yupiit 

 
by 

 
Julie Jo Kachinski 

 
 

Dr. Daniel C. Benyshek, Examination Committee Chair 
Professor of Anthropology 

University of Nevada, Las Vegas 
 

 Compared to other North American indigenous populations, Southwest Alaskan 

Yupiit exhibit very low rates of type 2 diabetes despite the occurrence of common 

risk factors.  Contemporary Yupiit obtain a substantial portion of their calories from 

traditional foods, which contain high amounts of omega-3 polyunsaturated fatty acids.  

Epidemiological and experimental animal research has linked glucose and insulin 

homeostasis with a diet high in omega-3s.  This study used an experimental animal 

model to explore potential diabetes protective effects (for adult offspring) of prenatal 

maternal nutrition modeled on traditional locally-obtained Yupiit diets.  The results of 

this study showed that the adult offspring whose mothers consumed a diet modeled 

on traditional Yup’ik foods during pregnancy were more insulin sensitive (less prone 

to diabetes) than adult offspring whose mothers received a Western diet prenatally.  

These findings provide further insight into our understanding of the role that specific 

maternal nutrients play in programming adult metabolism and have significant 

implications for dietary intervention strategies aimed at preventing type 2 diabetes. 
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CHAPTER 1 

 

INTRODUCTION 

Statement of the Problem  

Type 2 Diabetes (T2D) is a metabolic disorder characterized by chronically elevated 

blood glucose due to insulin resistance, and eventually, insulin insufficiency.  The World 

Health Organization estimates that the global prevalence of T2D in 2000 will nearly 

double from 2.8% to 4.4% by 2030 (Wild et al., 2004).  Epidemiological evidence 

suggests that this disease was rare in the beginning of the 20th century, but after World 

War II rates began to increase rapidly.  In the 50 years following the war prevalence 

continued to climb and incidence rates among children, which were once exceedingly 

low, became an international health concern.   

Over the last decade education and awareness about T2D has significantly grown in 

both public and private domains.  Furthermore, a significant amount of interdisciplinary 

research has been undertaken to understand the etiology of T2D, and to control the 

disorder’s rapid increase.  Despite these efforts, annual global prevalence continues to 

grow.   

The present study offers a novel approach towards a better understanding of T2D 

origins by examining a unique low prevalence, but high risk population – Alaskan 

Eskimos of the Yukon-Kuskokwim delta area.   An experimental animal study was used 

to explore whether or not elements of traditional Eskimo diets might provide “protection” 

against the development of T2D. 
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Epidemiology of Type 2 Diabetes in Alaska and the Lower 48 States 

Among the highest prevalence populations around the world the development of T2D 

is linked to transitions from an indigenous, traditional subsistence economy to a wage 

economy (i.e., sedentism and consumption of high caloric diets which lead to the 

development of central adiposity).  In general, such transitions (especially in a historical 

‘colonial’ context) are highly correlated with T2D risk (i.e. hyperinsulinaemia, 

hypertryglyceridaemia, insulin resistance, glucose intolerance).  “High” (>30%) 

prevalence populations (i.e., Pima: 50%, Oji-Cree: 40%, Havasupai: 38%, Pacific 

Nauruans: 28.1%, Australian Aborigines: 29.6%) are all characteristically obese – 

particularly carrying adipose tissue abdominally, consume a high caloric diet that is also 

high in saturated fats, and tend to lead a sedentary lifestyle characterized by low amounts 

physical activity (Benyshek et al., 2001).  Some scholars have coined T2D, and other 

chronic disorders, “diseases of modernization,” in part because of the increase in risk 

observed when aboriginal populations transition to the dietary and daily physical activity 

level associated with a “modern Western” lifestyle.   Ironically, T2D prevalence for 

Europeans and White Americans are anywhere from 3-10%; much lower than those for 

aboriginal populations living similar “Western” lifestyles (King and Rewers 1993).  In 

2007 it was estimated that the prevalence of diabetes in the U.S. was 7.8% (Centers for 

Disease Control 2007).  While prevalence data for type of diabetes was not available, 

prevalence of T2D was likely to be around 7.0% as T2D constitutes over 90% of all 

diabetes cases worldwide. 

In contrast to the many high prevalence Native American populations in the U.S. 

(e.g., Pima - ~50%, Havasupai – 38%) the most recent estimated overall T2D age 
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adjusted prevalence for all aboriginal Alaskan Eskimo populations in 2008 remain low – 

6.9% (Centers for Disease Control 2008).  While differences exist among the varying 

ethnic groups that inhabit Alaska (with higher percentages observed in the Eskimo’s 

Native counterparts, Athapaskan Indians – 10% over the age of 40 in 1987 - and Aleuts – 

5.8% over the age of 35 in 1993) the prevalence of T2D among southwest Alaskan Yupiit 

is 3.3% - considerably lower compared to their indigenous neighbors (Mohatt et al., 

2007).  Two lines of evidence, however, including presumed “thrifty “ genotypic 

predispositions and the presence of obesity and sedentary lifestyles associated with a 

recent transition from a traditional high protein/high fat diet to a typical high caloric 

“Western” diet, place southwest Alaskan Yupiit in the highest population  risk category 

for T2D.  Despite this, southwest Alaskan Yupiit have a lower adult prevalence of T2D 

than another low prevalence ethnic group, White Americans (5.5% among males and 

5.0% among females) (CDC 2007). 

 

Type 2 Diabetes Etiology 

Thrifty Genotype Hypothesis 

 When examined cross-culturally, aboriginal groups (e.g., Native Americans, 

Australian Aborigines) tend to be disproportionately affected by T2D.    Prevalence for 

these groups are anywhere from two to five times higher than the overall U.S. rate of 7% 

(Centers for Disease Control 2007).  These disparities in prevalence have prompted 

researchers to investigate the possible underlying mechanisms contributing to differences 

in disease susceptibility.  The “Thrifty Genotype” hypothesis, proposed by James Neel in 

1962, was one of the first etiological models developed to account for the origins of T2D.  
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In its original formulation, Neel suggests that the foraging ancestors of modern aboriginal 

populations underwent frequent periods of feast and famine (Neel 1962).  Over time these 

periodic cycles selected for those individuals with a quick “insulin trigger”, which rapidly 

converted the energy obtained during periods of feasting to fat.  These fat stores would 

then serve as an energy store in times of famine.  Eventually, these same metabolism-

regulating genes that offered a survival advantage during periods of energy restriction in 

the distant past, would become disease promoting in food secure contemporary 

indigenous populations living a modern “Western” lifestyle.   

 In the nearly five decades following Neel’s publication of the “Thrifty Genotype” 

hypothesis, extensive genetics research has been carried out in search of the hypothesized 

“thrifty genes”.  While researchers were able to identify specific genes related to the 

monogenic forms of diabetes, (e.g., maturity onset diabetes of the young and maternally 

inherited diabetes and deafness), identification of the T2D susceptibility genes capable of 

accounting for large prevalence differences between high and low prevalence populations 

remains inconclusive.  Of those possible genetic factors related specifically to T2D (e.g., 

a variant allele of the promoter region involved in insulin transcription, paternally 

transmitted class III alleles of the variable region upstream of the insulin gene) these 

factors were only found in some ethnic groups and/or they were also associated with 

other phenotypes (Velho and Frogul 2001).  Today most researchers believe that T2D is 

polygenic (involving many loci), multigenic (involving a set of related genes), and 

pleiotropic (genes which affect several aspects of the phenotype).  Despite the lack of 

progress in clearly identifying the population-clustered “thrifty genes”, hypothesized to 
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exist by Neel, the “Thrifty Genotype” hypothesis remains a firmly entrenched model 

accounting for population based differences in T2D prevalence. 

Thrifty Phenotype Hypothesis (The Developmental Origins of Health and Disease 

[DOHaD]) 

A separate etiological model, originally advanced by Hales and Barker in 1992, 

offered an alternative approach to the classic genetic predisposition hypotheses and may 

help better explain T2D origins, especially in the highest prevalence populations.  These 

authors posit a “Thrifty Phenotype”, which points to the causal role early life 

environments (e.g., intra-uterine) play in “programming” adult glucose metabolism. 

Importantly prenatal developmental programming is often mediated through maternal 

nutritional pathways.  In a study that included 370 men from England, the authors found 

a negative correlation between the incidence of T2D (and impaired glucose tolerance) in 

adulthood and weight at birth (a general marker of maternal nutrition during pregnancy), 

suggesting that developmental processes occurring in utero may have permanent 

metabolic effects for the phenotype (Hales and Barker 1992).  The “thrifty phenotype” 

model has been further substantiated in many other epidemiological and experimental 

animal studies.   Several human and rat studies have shown that low birth weight due to 

prenatal exposure to famine and/or maternal malnutrition is associated with increased 

insulin resistance and T2D when a high caloric and high saturated fat diet is consumed 

post-natally (Ravelli et al., 1998; Rossetti et al., 1989; Benyshek et al., 2004).  

Additionally, fetal programming can lead to impaired growth and development in 

subsequent generations.  A study published in Diabetologia in 2008 showed that 

insulin/glucose metabolism was altered in the F1, F2, and F3 generations (all receiving 
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nutritionally adequate diets) of offspring protein malnourished during pregnancy 

(Benyshek et al., 2006).   Research following publication of the  “thrifty phenotype” 

hypothesis has linked other chronic health conditions (i.e. cardiovascular disease, 

hypertension) with low birth weight and decreased birth length, which further 

substantiates the role of fetal nutrition on the development of disease in adulthood 

(Godfrey and Barker 2000).  Today, thrifty phenotype etiological models are likely to be 

referred to as “developmental” because processes occurring during development appear 

to permanently “program” certain metabolic aspects of the phenotype. 

 

Patterns in Aboriginal Subsistence Transitions 

Several of the aforementioned clinical and experimental animal studies (and 

subsequent fetal growth patterns) model dietary transitions that were occurring in the late 

19th and early 20th centuries in the United States.  The U.S. government’s attempt to 

assimilate Native Americans - through the forced relocation and/or concentration of these 

groups onto reservations - prevented these populations from practicing and maintaining 

their traditional lifestyle, both in terms of subsistence and cultural beliefs and practices. 

Although many of these groups were given food in the early reservation era (in the form 

of government rations) these supplements were often inadequate in terms of daily caloric 

and nutrient needs, which led to starvation and famine for many indigenous communities 

(Benyshek et al., 2001; Benyshek and Watson 2006).  Subsequent generations gestated 

under these malnourished conditions, then, were predisposed to developing T2D once 

convenience and grocery stores were established on the reservations, access to 

nutritionally poor food became readily available, and levels of physical activity were 
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substantially reduced.  These combined circumstances (i.e., tribal 

relocation/concentration followed by bouts of undernourishment and the subsequent 

abundance of Western foods) represent a common theme observed in high T2D 

prevalence Native American communities in the U.S. 

 The differences observed in prevalence between what would be considered two 

classic “thrifty genotype” populations, Native Americans and Alaskan Eskimos, warrant 

further investigation.  Current macronutrient intakes, genetic relatedness, shared 

prehistoric arctic/subarctic migration patterns, historic reliance on hunted/gathered foods, 

and contemporary behavioral and anthropometric disease risk factors are shared between 

the two groups, yet southwest Alaskan Yupiit have a much lower prevalence of T2D.  

Unlike high prevalence Native American groups (e.g., Pima), Yupiit diets were heavily 

supplemented with traditional foods until late in the 20th century (Heller and Scott 1967; 

Barker 1993) and in many contemporary communities still are (Parkinson et al., 1994; 

Ballew et al., 2004).  A combination of geographical barriers and/or climatic conditions, 

in addition to political forces prior, during, and after the Alaskan purchase by the U.S., 

dramatically influenced which subsistence items would comprise and/or significantly 

supplement the Native Alaskan diet.  Yupiit of the Yukon/Kuskokwim were not forcibly 

relocated out of their traditional territories where traditional food economies had to be 

abandoned, but instead remained in their local territory where they continue to exploit the 

area’s natural resources (Barker 1993).  Another important difference between Alaskan 

Eskimo and Native American populations is the nutrient composition of the respective 

traditional diets.  Traditional Eskimo diets were much higher in protein and fat 

(particularly omega-3 fatty acids commonly found in fish oils) and significantly lower in 
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carbohydrate content compared to the traditional diet of U.S. indigenous groups (Draper 

1977).   

Dietary Transitions 

Contemporary dietary analyses in the Yukon/Kuskokwim rivers areas suggests that 

seal oil and salmon are still eaten on a regular basis and in significant amounts, although 

undoubtedly less compared to pre-contact periods (Adler et al., 1994; Parkinson et al., 

1994).  These two subsistence items, seal and salmon, are high in omega-3 fatty acids 

which have been implicated in the protection against several chronic disorders, including 

cardiovascular disease, hypertension, and hypercholesterolemia in both experimental 

animal studies and epidemiological findings (Das 2001; Nettleton and Katz 2005).  

Furthermore, studies have shown that a high omega-3/omega-6 ratio can significantly 

alter insulin binding and cellular glucose uptake (Luo et al., 1996).  This ratio is much 

higher in the diets of contemporary Southwest Eskimo populations compared to 

“Western” diets, which suggests that this dietary component may be protecting against 

TD even when other risk factors are present (Parkinson et al., 1994).  While high intakes 

of omega-3 PUFA’s have been reported in many Alaskan regions, incorporating and 

addressing the dietary diversity, historical events and political forces that occurred across 

the region is beyond the scope of this study.  Instead, the current research focuses on one 

region of southwest Alaska for which substantial data has been gathered on diet - both 

spatially and temporally – and for which current prevalence and risk factors for T2D are 

well known – the Yukon-Kuskokwim region of southwest Alaska. 
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General Aims, Research Questions and Study Design 

There has been extensive research examining the developmental effects of pre-natal 

maternal malnutrition on adult offspring metabolic health, and thereby providing an 

experimental animal model of high prevalence of T2D among Native American groups. 

Currently, however, there are no experimental animal studies that have attempted to 

model the potential developmental effects of a pre-natal maternal diet that reflects 

southwestern Eskimo dietary intakes to determine its effect on adult offspring insulin-

glucose metabolism post-natally.  The reasons for modeling these particular nutritional 

intakes are multiple:  “prevalence data for which diabetes screening meets current 

diagnostic standards and thus is more likely to represent accurate percentages” (Murphy 

et al., 1995) risk factors data; and documented dietary changes, all encompassing 

temporal and spatial changes over time.  It is not known whether a pre-natal southwestern 

Yup’ik diet with a high omega-3/omega-6 ratio provides an added “protective” effect 

over a post-natal diet with the same ratio.  If maternal diet plays a pivotal role in the fetal 

programming of adult metabolism, then it is possible that the traditional southwestern 

Yup’ik diet consumed by women during pregnancy provides a “protective” effect against 

the development of insulin resistance/T2D in the offspring of these women, and that this 

effect explains the relatively low rates of T2D among Alaskan Eskimos, despite a 

constellation of other high risk factors.  This study used an animal model to examine the 

role of pre and post-natal nutrition in the development of insulin sensitivity in a high risk 

human population with a very low prevalence of insulin resistance and T2D – Southwest 

Alaskan Yupiit. 
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Research Questions 

The central research questions of the current experimental animal study are: 

What are the effects of varying prenatal and postnatal/postweaning diets on insulin 

sensitivity and blood lipid levels in adult offspring?   Can observed effects of varying 

prenatal and postnatal/postweaning diets on insulin sensitivity/blood lipid levels of adult 

offspring help explain the epidemiology of obesity-related disorders such as T2D and 

Metabolic Syndrome among Yup’ik Eskimos in southwestern Alaska today?   Does a 

“Traditional” Yup’ik diet consumed during pregnancy offer protection from insulin 

resistance and dyslipidemia of offspring in adulthood?   

Nine different maternal (prenatal)/offspring postweaning diet lines were used in the 

study.  The maternal prenatal and offspring postweaning diets were designed to model: 1) 

“Traditional” southwest Alaskan diet, 2) “Western”; and 3) a Control diets.  Female dams 

consumed the prenatal diets for one week prior to mating and during pregnancy and 

lactation.  Offspring of females fed each of these diets during the prenatal and nursing 

period from each of the three prenatal diets in this study consumed either a “Traditional”, 

“Western”, or “Transitional” diet after weaning.  Blood glucose, insulin, and lipid levels 

were then measured in adult offspring at 120 days.   

Experimental animal research over the last twenty-five years in the area of glucose 

and insulin metabolism is highly correlated with epidemiological and intervention studies 

in humans.  The use of a rat model was chosen for this study for several reasons:  (i) the 

rat’s ability to digest and metabolize types and quantities of macro and  micronutrients is 

similar to humans, (ii) the presence of a mammary gland and placenta in the rat ensures 

that the types and quantities of specific maternal dietary nutrients will be transferred to 
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the offspring, (iii) rat pups undergo a period of suckling and postnatal development like 

humans, and this period can be affected by dietary variables, (iv) it has been shown in 

rats, as in humans, that dietary components are used by the body to make up components 

of cellular membranes and to mount certain immunological responses.  

   

Significance of the Study 

In 2009 T2D ranked 5th among the leading diseases causing death in the United 

States.  According to the American Diabetes Association health care costs amounted to 

$174 billion in November 2009, an increase of 32% since 2002.  Not only do T2D 

complications – blindness, amputation, impotence, kidney failure – contribute to rising 

health care costs, but an individual possesses a two to four times risk of  dying from 

cardiovascular disease when coupled with T2D.  Once a rare disease, the Center for 

Disease Control estimates that T2D prevalence in the U.S. in 2006 among all ethnic 

groups is 7.2% and there are 150 million cases reported worldwide (WHO 2002).  As 

incidence rates and prevalence continue to climb, T2D disease etiology and prevention 

become even more critical.  Examining the effects of high protein/high PUFA diets in 

utero on adult offspring insulin sensitivity increases our understanding of the role of 

maternal prenatal/nursing diets on offspring adult metabolism, and may even point to 

“protective” health effects of specific prenatal dietary components found in typical low 

prevalence T2D populations.  These findings are potentially beneficial for contributing to 

the development of new maternal prenatal diet recommendations and/or encouraging the 

maintenance of existing traditional prenatal diets that “optimize” maternal and offspring 

adult health.    
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CHAPTER 2 

 

SUBSISTENCE PATTERNS IN SOUTHWEST ALASKA AND THEIR CHANGES 

OVER TIME 

Russian and American Contact in the Alaskan-Yukon Delta and its Influences on Yup’ik 

Subsistence Practices and Health 

Scholars have demonstrated that colonial influences during the late 19th and early 20th 

centuries had a significant impact on subsistence practices among Native American 

populations with high prevalence of obesity related health disorders.  An extended period 

of malnutrition followed by a rapid transition to a diet that is high in saturated fat and 

refined carbohydrates has been associated with the development and perpetuation of T2D 

in both Pima and Havasupai populations, among others (Benyshek et al., 2001).  Colonial 

impacts, in the Southwest region of Alaska (especially with respect to subsistence food 

economies) were less pronounced compared to those for the Pima, Havasupai, and other 

Native American groups in the lower 48 states (Zagoskin 1967; Barker 1993).  In fact, 

many early Russian explorers made concerted efforts to maintain peaceful negotiations 

with the locals and to reduce intertribal feuds, while often intermarrying with native 

women in the delta.  

Russian Period 

Contact between non-natives and Natives of Alaska began in the mid 1700s when 

Russian settlers established forts and trading posts along the Aleutian chain and on 

Kodiak Island and Sitka for the purposes of obtaining beaver pelts and sea otter furs for 

trade with China (Barker 1993; Naske and Slotnick 1987).  While a substantial amount of 
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exploration and business occurred along Alaskan’s southeastern and northern coasts, the 

Yukon-Kuskokwim delta remained relatively unexplored until the beginning of the 

1800s.  One of the reasons for this may have been the shallow waters along the Bering 

Sea coast which prevented whales from migrating through these waters.  Consequently, 

Russian navigators were forced further north in search of exploitable sea mammals 

(Barker 1993).  Nevertheless, by 1830 an abundance of beaver was discovered along the 

Kuskokwim catalyzing the development of Kolmakovskiy Redoubt on the Kuskokwim 

and two other Russian posts along the Yukon.  In exchange for tobacco, firearms, sable, 

beads, metal pots, knives, lances and even Russian clothing, Alaskan Natives traded their 

highly coveted beaver pelts, as well as otter and sometimes muskrat.   

The progressive nature of Russia’s capitalistic pursuits in Alaska during this time has 

been described as a bourgeois business enterprise fueled by a working class opposed to 

the feudal serfdom system in Russia.  Long term Russian influence, authority, and 

permanence in the area, however, was limited.  Russian serfdom during the early period 

limited the number of bodies available for the purposes of exploration and of those that 

managed to become a part of these voyages many were inexperienced, illiterate, or ex-

convicts, all of which led to an increase in the number of lost ships and/or unproductive 

journeys (Naske and Slotnick 1987).  Furthermore, due to the enormous expenses 

associated with shipbuilding and sailing from Siberia to Alaska, Russians were forced to 

depend on British and American agents for food and supplies once arriving on the 

mainland.  The obstacles faced by Russian entities involved in Alaskan affairs were 

many.  An unstable political regime combined with a constant change in leadership often 

meant that objectives for the Russia were in continual flux.  A significant amount of 



www.manaraa.com

14 

effort was placed on developing ways to emulate their European neighbors to the West 

and not on largely unchartered and relatively “underdeveloped” Alaskan territory.  

Russian trading posts were fraught with instability as evidenced by the post manager’s 

voiced frustrations over tardy and sometimes obsolete supplies as promised by the 

Russian American company (an enterprise established by Russia designed to explore the 

Northwest coast of America and West coast of Alaska).  Even by the time Russian 

interest in the fur trade had strengthened, their naval powers were unable to compete with 

the very successful and efficient British navy occupying the territory, and without the 

backing of the imperial regime, the private Russian entities in the area were never able to 

gain substantial control.  Economic dependence on the other two major forces in Alaska 

at the time, the U.S. and England, would eventually lead to the demise of Russia’s 

colonization efforts.   

  Despite many of the barriers and struggles faced by the early explorers, scientific 

exploration was encouraged by the Russian-American commanders and a handful of later 

explorers made significant contributions to Alaska’s zoology, geography, and 

ethnography (Zagoskin 1967).  The first written report of any customs observed in the 

Kuskokwim area, was documented by Peter Korsakovskiy in 1818 and several explorers 

thereafter collected data on tribal location.  Most of what is known by outsiders about the 

delta’s geography, Native people, their customs and language at the time is attributed to 

the Russian naval officer, Laventry Zagoskin, whose travels encompassed some 3300 

miles. In an effort to expand their potential business opportunities in Alaska’s interior, to 

gain an understanding of routes of communication between the two major rivers, and to 

ascertain how furs were being transported out of the interior for trade with the Chuchki, 
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Russia sent Zagoskin on a two year expedition to the delta in 1843.  A child raised among 

the feudal peasantry, Zagoskin was educated in a private school and later trained in the 

Cadet Corps.  He served in the Navy and passed time on the ships reading books 

published by his Alaskan exploring predecessors, a past time which contributed to his 

desires to join the Russian-American enterprise.  The combination of his literary breadth 

and astute navigational skills and experience were the foundations upon which Zagoskin 

successfully traversed the harsh landscape and accurately mapped geological phenomena 

in Alaska’s interior.   

By kayak in the summertime and on snowshoe in the winter, Zagoskin and his crew 

collected mineral, astrological, and ecological data while trading, living among, and 

participating in the Native way of life with the tribes along the rivers and their tributaries.  

Their journey consisted of a loop that began at Fort St. Michael.  The crew traveled up 

the coast as far as Unalaklik post and then east into Indian territory.  From Nulato they 

followed the Yukon south to Ikogmyut and across the tundra to the Kuskokwim, which 

they mapped as far north as the headwaters to the Tochotno River.  The party subsisted 

primarily on the Native diet of birds, wild fowl, deer meat, sea mammals and fish and 

secondarily on traditional Russian food items like tea and biscuits.  Due to the fact that 

posts and therefore, Russian presence, had been established along key trading routes and 

because Russian dominance had been undermined by political and economic factors, the 

majority of Zagoskin’s encounters with the natives were peaceful and the Russian 

objectives were realized and tolerated.    

In 1854, Russian Mission (previously known as Ikogmyut) was built upriver from the 

town of Marshall on the Yukon with the objective of converting the locals to the 
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Orthodox faith, and after the United States purchased Alaska in 1867, Catholic and 

Moravian churches were erected along the lower Kuskokwim.  One church would be 

erected in every major village thereafter.   

American Period 

While commercial interests in salmon fishing and timber exploitation took place in 

the early era of American rule, it was mining that lead to the first major population 

increase in Alaska – nearly doubling in the decade after the discovery of gold (Naske and 

Slotnick 1987).  According to economist Richard Cooley, salmon fisheries were isolated 

and the labor and supplies involved with running the canneries, coupled with a small 

population density, mitigated American involvement in Alaska’s fishing industry – at 

least in Central Alaska (Naske and Slotnick 1987).  Mining, as compared to salmon 

fishing or the timber industry, produced a larger benefit to cost ratio for those prospectors 

involved as the value of gold was much higher than the value of salmon. The modern day 

towns/cities of Southwest Alaska including Bethel, Iditarod, McGrath, Flat and Ophir 

were born from the mining camps that had been established in the area in the late 1800s.  

Congress, at least in the early phases of American involvement in Alaska, emphasized 

great respect for the rights of Natives and demanded that their occupancy and use of their 

land remain undisturbed.  (Interestingly, when significant amounts of oil were discovered 

on the North Slope in the 1960s concern over Native land rights became a politicized 

agenda rather than genuine consideration for the local’s rights [Naske and Slotnick 

1987]).  Following the discovery of gold in Alaska, the U.S. government appropriated 

funds to the U.S.Geological Survey to be used for survey and exploration, and by 1920 

nearly 4,890 miles of roads, a quarter of which were wagon roads, and trails had been 
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constructed which linked many – previously isolated - delta communities together.  

Railroad construction was also initiated but coal field closings (due to President Theodore 

Roosevelt’s interest in resource conservation), rugged terrain, and severe climate halted 

its progress.   

In many ways the combination of Alaska’s geographical location and resulting 

climate insulated the Yup’ik living in the interior from the American economic and 

political dominance of Native peoples so common in the lower 48 states.  Population 

decline continued as the events of World War I took many American workers in Alaska 

and the post war economic boom in the U.S. gave those same workers and/or other 

American citizens no incentive to return.  The lack of self government, an inefficient road 

system and a small population in continual turnover gave the inhabitants of Alaska 

minimal self control.  Any decisions regulating Alaska’s resources were to be handled by 

Congress who, at the time, prioritized their interests in the lower 48 states.  Moreover, a 

decreased demand for copper once the war ended - in addition to the replacement of 

human labor with mechanization - decreased employment opportunities in mining which 

further reduced American involvement in the Alaskan economy.  An already unstable 

economy was exacerbated with the onset of the Great Depression in the 1930s and when 

funds were cut for building and/or improvements that had begun in the more urban areas 

of Alaska.  The events surrounding Alaska in World War II, however, initiated interest by 

the U.S. Army, and Alaska became a critical component in the security of the lower 48 

states.  What was once considered an unforgiving and harsh landscape, Alaska now 

proved to be a tremendous asset in the protection of American lands as the circumpolar 

weather patterns around the state played a major role in defeating Japanese military 
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forces.  Acting as a half way point between Alaska and Japan, the Aleutian Islands 

became both a desirable defensive and offensive location for the U.S. Army and the 

Japanese Imperial High Command.  Fearing the Japanese might attack the West Coast 

from the islands, the U.S. Army stationed 45,000 men in Alaska to counter attacks aimed 

at the Americans.     

These events played a large role in shaping Alaska’s future as a state, but the major 

instrument of change was the discovery and exploitation of oil on the North Slope.  As 

pressure mounted from shareholders and pipeline developers to begin construction of the 

Trans-Alaska line, President Richard Nixon signed the Alaska Native Claims Settlement 

Act in 1971, offering $962.5 million in compensation for use of the land and 148,500,000 

acres, or 1/9th of Alaska (once controlled by the government) to the Natives after what 

took many years of negotiations.  It was imperative that Congress pass the Act as pipeline 

construction could not commence until disputes over land had been settled (many Natives 

would not allow construction of the pipe on their land). Construction of the Trans-Alaska 

pipeline began in 1974 and the events which transpired significantly changed Alaska’s 

economy and subsistence practices.  Twelve regions – and later a thirteenth – 

representing a “Native association” and managed by corporations were born out of the 

act.  Alaskan Natives who owned private shares of the corporations, which were obtained 

by enrolling in a region, managed the regional corporations and their village equivalents.  

Thus, corporate ownership and decision making was a collective effort based on an 

individual’s share in the land which was ultimately rooted in Native identity.  Some 

aspects of land management on Indian reservations in the lower 48 are similar – most 

reservations are owned by the tribes, and reservations possess tribal sovereignty enabling 
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members of the tribe to self govern.  Indian reservation lands today are held in trust by 

the government and individual Native Indians do not own ‘shares’ of their land.  

Furthermore, when Europeans settled the lower 48 states Native Americans were often 

forcibly relocated to pieces of land considered less desirable to white settlers and 

government officials.  This is in contrast to Alaskan Natives who maintained possession 

of their traditional land (albeit ultimately at a fraction of their traditional territories).  

While Alaskan Natives continued a relatively traditional subsistence lifestyle on familiar 

territory, many American Indians in the lower 48 states were forced to adjust to their 

lands which were often poor in subsistence resources and inadequate for pursuing 

traditional subsistence practices (Benyshek et al., 2001).    

With the passing of ANCSA more Alaskan Natives began pursuing positions in hotel 

and fisheries management.   A cash economy based on commercial fishing, fish 

processing and other jobs provided by the U.S. Bureau of Indian Affairs enabled village 

residents to purchase new items used for hunting in addition to fuel, fish nets, 

ammunition and common household items (Klein 1966).  Out of the five southwestern 

villages studied by Scott and Heller in 1956, all generated income from welfare 

assistance and some type of wage economy (Heller and Scott 1967).  Technological 

influences began permeating Yupik hunting activities by the early 1960s, and outboard 

motors, snowmobiles, and CB radios were reported as the predominant methods of 

transportation and communication among and between the villages some 30 years later in 

the 1990s (Barker 1993).  One scholar suggests that the reliance on these modes of 

transportation is a result of the centralization of Native land and use patterns.  When once 

previously dispersed populations settled in towns situated around schools and churches, 
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and subsequently adopted a more market like economy, changes in hunting patterns 

ensued.  With a higher population density, Natives were forced to expand their hunting 

territory to meet their metabolic requirements and some reports show common travel in 

excess of 100 miles (Ellanna and Wheeler 1989). 

 

Traditional and ‘Transitional’ Yup’ik Subsistence 

Archaeological and biological anthropologists estimate that Yup’ik Eskimo 

populations have inhabited Alaska for around 5,000 years, and their unique cultural and 

physiological adaptations enabled them to survive the harsh Alaskan environment during 

that time (Szathmary 1984).  In addition to developing both cultural and biological 

strategies for maintaining normal body temperatures in this cold environment, the Eskimo 

adopted specialized subsistence patterns to meet their metabolic demands (Draper 1977).  

Both early explorers and contemporary researchers in the region noted an annual seasonal 

shift in the pursuit of game animals, fishing, and wild plant collection.  This was most 

likely a result of the polar climatic conditions in the area characterized by the freezeup 

and breakup of the river ice, thereby enabling or inhibiting subsistence activities which 

centered around fishing (Barker 1993).   

The majority of the hunting and subsistence practices took place during the spring 

and summer months, with some fishing and gathering in the fall and winter depending on 

the village (Heller and Scott 1967; Barker 1993).  The Natives moved to their winter 

houses once freeze-up commenced, usually by mid to late September, and survived on 

their stores of dried fish, seal oil, and/or fish eggs that were cached from the spring and 

summer months (Zagoskin 1967).    In general the summer and winter houses were built 
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in the same locality along the Kuskokwim and lower Yukon, but they were separated by 

some distance.  Life, therefore, was semi-nomadic with families establishing camp closer 

to the rivers during hunting season and moving back to the villages during the winter.   

During the colder months the community spent a significant amount of time in 

ceremonial practice.  These rituals emphasized the connection to the natural world and 

great care was taken to ensure that the souls of the animals that gave them nourishment 

were treated with respect, thereby increasing the likelihood of successful hunting and 

fishing endeavors in the future (Barker 1993).  These rituals took place in the community 

kazhim, which served multiple purposes.   It was a guesthouse, a bathhouse and the men’s 

sleeping quarters, a location for tanning hides, weaving fishnets, dining and dancing, and 

a discussion room for community matters.   Other gendered activities like parka 

manufacture and maintenance and summer hunting and trapping preparation took place in 

the kazhim.   The activities which took place in the kazhim underscore the traditional 

reliance on subsistence foods and the connection of these items to both cultural and 

individual sustainability.    

Early spring marked a period of lower caloric intake as fish stores, in general, were 

significantly reduced.   By March temperatures began to rise but travel by water was 

limited due to incomplete thawing of the river ice.  The partial thaw also prevented 

extensive travel by land as slushy ground impeded efficient sled movement – the 

predominant means of travel over the ice and snow.  Village inhabitants thus hunted 

migratory birds, when available, and survived on any animals obtained by trapping.    

A traditional Yupik diet consisted primarily of fish and/or seal oil and secondarily on 

animals such as moose, wildfowl – like ptarmigan, geese, pintails, and mallards - 
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snowshoe and arctic hare, muskrat, and berries depending both on the village and the 

season (Klein 1966; Heller and Scott 1967).  The extent and variety of fish in the diet 

varied depending on the tribes’ proximity to the coast and/or their location along the 2 

rivers.  Zagoskin noted varying quantities of silver, humpback, king, and Chinook salmon 

along the Yukon as well as larger quantities as compared to the Kuskowim.  In Ikogmyut 

and other non-coastal towns fish was the staple, but beluga fat was considered a delicacy 

and was traded through succession from the coastal peoples.  Other subsistence items 

included partridge, grouse, whitefish, yukola (split/dried fish) and tolkusha (fat and dried 

meat or fish made with roots or berries).  Zagoskin also commented on the feasibility and 

sustainability of agriculture in the interior, but the practice only became successful 

among certain Alaskan Indians (Zagoskin 1967).  Based on the predominance of these 

food items, nutritional researchers estimate that the majority of calories in the traditional 

diet, approximately 85-90%, were supplied by game animals and wildfowl, both high in 

structural fat and low in saturated fat, and/or marine mammals and fish (Heller and Scott 

1967; Mann et al., 1962; Barker 1993).  While seasonal berry collection did occur it is 

estimated that all sources of carbohydrates (also from wild greens, “mouse food”, Eskimo 

potato, and glycogen from the meat consumed) provided only 10-15% of the total dietary 

calories (Heller and Scott 1967).   

The inability of Russian, English, and American explorers and/or businessmen to 

exert overt control over indigenous Yupitt, combined with the environmental and 

economical constraints preventing access, until fairly recently, to more “Western” foods, 

have had several effects on the traditional practices of Alaskan Eskimos in the delta 

(Zagoskin 1967; Heller and Scott 1967).  Delta Yupiit did not experience the same 
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extended periods of chronic food shortage and starvation common to many reservation-

dwelling U.S. Native Americans.  Additionally Yup’ik diets were heavily supplemented 

with traditional foods until the end of the 20th century (Heller and Scott 1967; Knapp and 

Panruk 1978; Nobmann et al., 2005; Ebbesson et al., 1999; Barker 1993; Mohatt et al., 

2007).  The combination of political, historical, and economic forces beginning at contact 

and outlined above, helped insure that many indigenous practices – especially those 

associated with subsistence activities and dietary practices - remained strong up through 

the 20th century, unlike the changes that occurred for their Native neighbors on the north 

coast of Alaska (Barker 1993).   

 

Recent Southwestern Yup’ik Diet (1950s to beginning of 21st Century) 

Significant dietary changes in the region, in terms of major macronutrients, began 

occurring in the 20th century with the first recorded analysis reported in the mid 1950’s.  

In the Alaska Dietary Survey, conducted from 1956-1961, Heller and Scott provide a 

detailed analysis of macro and micronutrient composition in five villages – Akiak, 

Napaskiak, Kasigluk, Hooper Bay, and Newtok (Heller and Scott 1967).  Intakes over the 

span of the study and across the hunting seasons were averaged, but percentages likely 

fluctuated depending on the season.  Carbohydrate consumption increased to 33 percent 

of total calories due to the influence of “Western” foods and included items such as 

sugar, syrup, soft drinks, breads and cereals.  Local carbohydrate sources represented less 

than one percent of all carbohydrate intakes.  Protein constituted ~30% of total calories 

with the majority of the calories coming from local sources, especially fish.  The 

remainder of calories came from fat which was primarily from seal, seal oil and fish with 
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some supplementation of butter, margarine, and hydrogenated fat.  As a result of these 

“Western” fat items, the saturated fat content of Eskimo diets began to increase.  The 

nutritionists noted that out of all Eskimo villages studied, southwest Alaska was the last 

region to be significantly affected by Western food items.   Nevertheless, traditional food 

items remained a significant part of the Native diet and represented nearly half of caloric 

intakes.   

A separate study conducted by the Interdepartmental Committee on Nutrition for 

National Defense (ICNND) found similar results.  These researchers observed that 

protein intake, in grams, by Native men working in the National Guard were comparable 

to intakes by men in American Army training camps (Mann et al., 1962).  It was noted 

that among men of all ages, 29.3 % of calories came from protein, 35.4% from fat, and 

35.3% from carbohydrate.  In their mixed diet of traditional and store bought foods, the 

majority of the latter were cereals and sugars.  By 1978, macronutrient compositions of 

the native diet paralleled intakes by populations in the U.S. (Knapp and Panruk 1978).  

Five villages representing differing geographical locations in the delta were studies; 

Kwigillingok (Southern Coastal), Akiak (Kuskokwim River), Mountain Village (Yukon), 

Hooper Bay (Northern Coastal), and Kasigluk (Tundra Area). Macronutrient percentages 

equaled 17% protein, 35% fat, and 50% carbohydrate, but fish and indigenous protein 

were still major components of the diet. 

 A survey conducted by the Alaska Department of Fish and Game in the 1980s 

observed that of the 700 pounds of wild food procured per person per year, 518 pounds 

were fish,  and 66 pounds were sea mammals, while greens, waterfowl, and berries 

comprised the remaining 41 pounds (Wolfe and Walker 1987).  By 1990 this number had 
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decreased to 454 pounds per person yet is still relatively higher compared to more urban 

towns such Juneau, Anchorage, and Fairbanks with less than 50 pounds per person.  High 

seal oil (95%)  and fish consumption (99%) was also reported among 556 Yup’ik 

Eskimos >40 years of age from 15 villages in the Yukon/Kuskokwim Rivers delta studied 

by Adler et al. (Adler et al., 1994).  Although data was collected on the frequencies of 

traditional and nontraditional food items as well as information about physical activity, 

this data was not presented in their report.  These data clearly point to the continued 

reliance on traditional subsistence food items in the contemporary diet (Barker 1993).   

Not every study, however, has reported the same increased consumption in Western 

food items.  During July and August of 1984, an analysis of coastal versus inland village 

subsistence was performed on 80 participants between the ages of 4 and 40 (Parkinson et 

al., 1994).  The inland village was located 20 miles east of Bethel, Alaska and the other 

village on the Bering Sea coast, 100 miles west of Bethel.  The researchers noted that 

while Western foods were available in stores they were infrequently consumed and thus, 

an analysis of nontraditional foods was excluded from the study.  Compared to river 

village residents, coastal village residents reported eating traditional foods more 

frequently and consumed significantly more marine fish, birds, and marine mammals.  

These traditional foods were also eaten with more seal oil.  River village residents, on the 

other hand, consumed significantly more salmon.  Significant for this study, however, are 

the results from their analysis.  Both groups of village residents had significantly higher 

concentrations of plasma omega-3 (w-3) fatty acids compared to nonnative controls from 

the University of Oregon Family Heart Study, which appears to be consistent with a 

traditional diet high in marine mammals and fish.  There were no significant differences 
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in plasma w-6 fatty acids.  Limited intakes of more Western food could have been the 

result of village proximity and, therefore, access to convenience foods, the higher costs 

associated with food items that are transported into remote villages, a reliance towards a 

cultural identity centered around traditional subsistence items and the means of obtaining 

them, and/or a distaste for “Western” foods.  While later studies explored the correlation 

between these variables and current subsistence behaviors, this study did not provide an 

explanation for the limited intakes of Western food items observed in this study. 

In 2001 a large scale study was conducted on women of child bearing age in 1 urban 

and five rural regions in Alaska.  Researchers collected data using a one-day 24-hour 

dietary recall and the Block Brief Food Frequency tool (BBFFQ).  In both the urban and 

rural regions, sweetened beverages (soda, fruit juices, and sweetened beverages) 

accounted for 33 percent of the total caloric intake.  The majority of the carbohydrates 

were high in sucrose as opposed to complex grains, but indigenous plants and berries 

continued to be eaten in large amounts when available.  Meat and fish were prepared by 

boiling versus frying and, similar to other studies, use of traditional subsistence foods 

was high (Smith et al., 2008).  The following summer The Alaska Traditional Diet 

Survey was conducted in villages of five Regional Health Corporations using an 

interviewer administered food frequency questionnaire.  Among the top 50 most 

frequently mentioned foods reported by 224 participants in the Yukon-Kuskokwim 

Health Corporation Region, Hi-C, sugared soda-pop, and fruit juice ranked first, second, 

and third.  One third of the top 50 foods were traditional food items out of which half 

were fish and seal oil.  The most recent dietary data has been collected by researchers 

working with the Center for Alaska Native Health Research (CANHR), formed in 2002.  
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Funded by the Centers of Biomedical Research Excellence at the National Center for 

Research Resources of the National Institutes of Health, CANHR researchers developed a 

tri-part program designed to investigate how the combination of genetics, nutrition and 

cultural-behavioral factors influenced the development of chronic disease in southwest 

Yupiit.  These researchers were particularly interested in Southwestern Yupiit who, out of 

all Eskimo groups in Alaska, had remained the most intact culturally (using the extent of 

Native language use as a measure) yet possessed equal overweight/obesity prevalence 

(32.5% and 32%) to that observed in the lower 48 states.  These Yupiit, while 

supplementing their diet with Western food items, continue to consume significant 

amounts of traditional subsistence items (Mohatt et al., 2007). 

Physical Activity 

Researchers (Adler et al., 1995) analyzing food consumption in the 

Yukon/Kuskowkim rivers delta also collected information on the participation in 

“traditional” (i.e. walking, rowing a boat, carrying water by hand, washing clothes by 

hand, using a dog sled or handsaw) vs. “modern” (i.e. using a vehicle or motorboat, 

transport of water by vehicle, and using a chainsaw) physical activities during a 13 month 

period between 1987 and 1988.  The researchers also observed that approximately 65% 

of the population was engaged in moderate to high physical activity, while only 35% 

reported low physical activity.  The effects of an increasingly sedentary lifestyle, 

however, are evident in growing prevalence of obesity in these communities.  This may, 

in part, be due to a shift towards a wage economy, which reduces time spent actively 

pursuing traditional activities like hunting and fishing (Heller and Scott 1967).   
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Type 2 Diabetes and its Associated Risk Factors among Delta Yupiit 

Approximately twenty thousand people living in 50 villages now reside in the 

Alaskan Southwest, a flat delta the size of Kansas (Barker 1993).  Studies in the 1950’s 

and 1960’s suggest that diabetes was rare - if not absent- in the Native Alaskan 

population.  In fact, a study undertaken by the ICNND in 1958 showed that infectious 

disease, specifically tuberculosis, and poor dental health were two of the most common 

health problems in the state (Mann et al., 1962).  This does not mean, however, that T2D 

was as low as the initial estimate suggest, as early studies were limited by several factors 

including, consistent definitions of T2D, screening methods and/or laboratory techniques.  

The first few confirmed cases of T2D in the delta were reported in 1962.  A survey 

conducted in the Yukon-Kuskowkwim region during that year suggested that 1.1% of the 

population over the age of 20 “probably” had diabetes (Mouratoff et al., 1967).  Twenty-

five years later, the same 15 villages studied in 1962 were reassessed and it was found 

that 1.73% of village residents over the age of 20 had T2D (Murphy et al., 1995).  This 

data was obtained from interpreting oral glucose tolerance tests (OGTT) according to 

World Health Organization (WHO) criteria. 

By the 1980’s the number of cases of T2D had increased, but were still very low 

relative to Native American populations in the lower 48 states.  In contrast to the many 

high prevalence Native American populations there (e.g., Pima - ~50%, Havasupai – 

38%) the estimated overall T2D prevalence rates for indigenous Southwest Alaskan 

Eskimo populations remain low, 3.4% (Mohatt et al., 2007).  T2D prevalence exists along 

a continuum (.08% to 15%) in Alaska, increasing with contact/exposure to 

Euro/American communities and Western foods.  Those Yup’ik populations with the 
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highest prevalence tend to have had the earliest and most extensive contact with 

explorers.  Athabascan Indians and Aleuts, for example, have slightly higher prevalence, 

6.46%-11.54% respectively- over the age of 35, as a result of intense salmon exploitation 

by whites (Naylor et al., 2003).   

Overweight, Obesity, and Fat Patterning 

  The ICNND in 1958 reported that obesity was rare in a group of Southwestern 

Alaska Yup’ik men working for the National Guard (Mann et al., 1962).  However, the 

same study found that in a group of 70 women, 15.7% were considered obese (“Obesity” 

taken as >120% of standard weight using the U.S. Medico-Actuarial Tables).  As with 

other cardio-metabolic risk factors, obesity has increased in the delta.  From January 

1987 to February 1988, a village based health fair screening study was conducted among 

residents > 20 years old from 15 villages along the Yukon and Kuskokwim rivers in 

Southwestern Alaska (Murphy et al., 1995).  The average BMI for Yup’ik males and 

females > 20-39 years of age was 25.1 and 27.4 respectively, while the average BMI 

among males and females >40 years of age were 25.7 and 29 respectively. According to 

the National Center for Health Statistics, BMI’s < 25 kg/m^2 are considered low, 25-30 

kg/m^2 medium/overweight, and >30 kg/m^2 are high/obese.  Thus, twenty-seven 

percent of Yup’ik men and 51% of women over the age of 20 were overweight.  

Interestingly, in this study, Yup’ik women had a significantly higher BMI than Indian 

women (P<.001), yet prevalence of T2D among Indian women was higher, 3.37% vs. 

1.73%.  Statistics gathered by the State of Alaska in 1999 suggest that 38% of rural 

Alaskans near the Bethel census area were overweight (The Alaska Bureau of Vital 

Statistics).  These statistics mirror rates observed in the U.S. where, interestingly, T2D 
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prevalence is higher.  According to the 1999 National Health and Nutrition Examination 

Survey (NHANES), 27% of Americans between the ages of 20 and 74 were considered 

obese and 34% were considered overweight (Alaska Department of Health and Social 

Services).  Some researchers have questioned the validity of using BMI calculations to 

assess overweight and obesity among Eskimos who are characteristically shorter and 

wider (Young 2007).  This phenotype, which has the effect of reducing overall body 

surface area, limits body heat loss and is generally considered a physiological adaptation 

to cold environments (Bergmann 1847).  Because BMI calculations can increase with 

reduced stature, some Eskimos could be erroneously defined as overweight. 

In most high prevalence populations, T2D has been positively correlated with being 

overweight or obese as measured by waist: hip ratios or waist circumference.  While an 

increase in obesity has been observed in the delta over the past 50 years - similar to the 

increase in T2D prevalence - it is especially noteworthy that there does not appear to be a 

corresponding increase in other metabolic markers (increased triglycerides, total and 

LDL cholesterol) commonly associated with obesity.  The Center for Alaska Native 

Health Research studying rural Southwestern Alaskans has coined this phenomenon 

Metabolically Healthy but Obese.   

 Current epidemiological data suggests that Alaskan Yupiit in certain regions of the 

Southwest are becoming more overweight, engaging in less physical activity, and are 

increasing their consumption of non-traditional foods.  As a result, one would expect to 

find similar T2D prevalence among Alaskan Yupiit and Native Indians in the U.S. with 

comparable diet, activity level and anthropometric risk factors. Surprisingly, the opposite 

is seen; current prevalence among Alaskan Yup’ik populations is not only considerably 



www.manaraa.com

31 

lower than their Native American counterparts in the U.S., T2D prevalence among Yupiit 

is among the lowest reported for T2D by ethnicity in the U.S. (Boyer et al., 2007).  This 

difference in prevalence, between what would be considered two classic “thrifty 

genotype” populations, Native Americans and Alaskan Yupiit, provided the inspiration 

for the current study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

32 

CHAPTER 3 

 

POLYUNSATURATED FATTY ACIDS 

Macronutrient Composition of Traditional Southwest Alaskan Yup’ik Diet 

The low carbohydrate content of the traditional Yup’ik diet is significant when 

considering that the human adult brain alone requires around 100 grams of glucose per 

day and the traditional high protein diet probably only provided 10 of these (Draper 

1977).  Furthermore, ample supplies of glucose are critical for the developing fetus 

during pregnancy and after birth for lactation.  Draper suggests that the high protein 

concentration of the traditional diet was critical since “…extra protein was necessary to 

furnish the amino acids required for glucose synthesis beyond those required for body 

protein synthesis” (Draper 1977).  That is, the body might have improved its efficiency 

for gluconeogenesis, a physiological process whereby the body creates glucose from 

protein substrates.  It may also be possible that Yupiit consuming a diet made up solely of 

locally-obtained food possess sufficient levels of circulating glucose as a result of the 

body’s especially efficient response to a high protein diet.  When protein is consumed the 

liver produces glucagon, a hormone which causes cells in the body to release their stored 

contents of glucose.  Other scholars have proposed that Eskimo populations adapted 

metabolically to a low carbohydrate diet via acquisition of an insulin resistant genotype 

(Colagiuri and Brand Miller 1997).  Skeletal muscle cells that were resistant to the action 

of insulin would allow for higher circulating levels of blood glucose which could then be 

utilized for the brain and the developing fetus.  If an insulin resistant genotype 

characterized Eskimo populations in the recent past, then this insulin-resistant, “thrifty 
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genotype” should characterize contemporary Eskimo populations.  Furthermore, an 

insulin resistant genotype - in conjunction with the insulin resistance associated with high 

caloric/high carbohydrate diets and obesity - should dramatically increase the prevalence 

of T2D.  As discussed in Chapter 2, this is not the case among Yupiit in Alaska today.  

When Neel originally proposed his “thrifty genotype” he did not take into account how 

circulating levels of insulin are affected by ratios of the 3 energy yielding macronutrients 

in the diet and/or the source of the macronutrients.  Insulin production and metabolism in 

the body is complex.  It affects and is affected by prenatal conditions, other circulating 

hormones and cellular constituents, as well as exogenous nutrients that enter the body.  In 

fact, research has shown that when relatively healthy individuals are placed on a more 

“traditional hunter-gatherer” diet (the one characterized in Neel’s model) overall 

biological markers of health (i.e. plasma insulin, triglycerides, LDLs, total cholesterol) 

improve (Frassetto et al., 2009).  Unless these periods of feasting included a universal 

consumption of large amounts of simple sugars (which cause a spike in insulin) the 

conversion to fat that Neel attributes to an “insulin trigger” may in fact be nothing more 

than the body’s reaction to convert excess nutrients to fat when caloric intake has 

exceeded its metabolic requirements.  Southwestern Alaskan Yupiit appear to be insulin 

sensitive, not insulin resistant.  Recent research suggests that Yup’ik insulin sensitivity is 

associated with high intakes of omega-3 fatty acids (Ebbesson et al., 1999).  Likely 

candidates for this metabolic observation are the polyunsaturated fatty acids, 

eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) contained in traditional 

marine subsistence items and a lower saturated/polyunsaturated ratio. 
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Polyunsaturated Fatty Acids and their Physiological Roles 

Polyunsaturated fatty acids exist as both short chain (<20 carbon atoms long) and 

long chain (>20 carbon atoms long) fatty acids.  Unlike monounsaturated fatty acids, 

which contain one unsaturation and one double bond, or saturated fatty acids, whose 

carbon atoms are all saturated with hydrogen atoms, polyunsaturated fatty acids possess 

multiple double bonds.  Polyunsaturated fatty acids (PUFA’s) are classified into three 

main families, omega 9, omega 6, and omega 3 depending on the position of the first 

double bond counting from the methyl (i.e., the ‘omega’) end.  While omega 9 fatty acids 

play a lesser role in human nutrition (are synthesized by the body when omega 3 or 6 

fatty acids are unavailable), omega 3 and omega 6 are essential, both as structural 

components within cells and as biological regulators.  These essential fatty acids 

comprise a substantial portion of the lipids in cellular membranes and are also precursors 

for chemical mediators the body creates for specific metabolic functions.  Research using 

cell lines has shown that the fatty acid profile of a cell membrane (i.e. different amounts 

of saturated, monounsaturated, and polyunsaturated fatty acids) can influence the 

function of certain membrane proteins like receptors, transporters, and enzymes (Spector 

and Yorek 1985).  Furthermore, alterations in membrane lipid composition have been 

shown to affect phagocytosis, endocytosis, exocytosis, cytoxicity, prostaglandin 

production, and cell growth (Spector and Yorek 1985).  Table 1 lists the types of short 

chain and long chain polyunsaturates within each lipid family in addition to food sources 

in which they are found. (The Fish Foundation). 
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Table 1.  Polyunsaturated Fatty Acids and their Sources. 
________________________________________________________________________ 
 

      Lipid                Name                  Number of carbons           Source(s) 
                 and number of unsaturations 
 
  n-9  Oleic acid   18:1 
      18:2 
      20:2 
  Eicosatrienoic acid  20:3 
      22:3 
 

              n-6    Linoleic acid (LA)  18:2                Vegetable oils such as        
                                  sunflower, corn, cottonseed                                             
                                                       sesame and safflower 
  Gamma-linolenic acid (GLA) 18:3     Evening primrose oil,                           
           Blackcurrant seed 
                                                              
      20:3 
                        Arachidonic acid (AA) 20:4     Found in small amounts in        
                                                                                                   meat (Chicken, beef, Pork,                    
                                                                                                   lamb, and turkey) egg yolk,  
                                                                                                   liver, kidney 
      22:4 
      22:5 
       n-3 Alpha-linolenic acid (LNA) 18:3     From linseed, rapeseed,  
                                 flaxseed and soybean oils 
      18:4 
      20:4 

                 Eicosapentaenoic acid (EPA) 20:5     Only significant source is                  
                       oil rich fish 

  Docosapentaenoic acid 22:5 
      24:5 
      24:6 
  Docosahexaenoic acid (DHA) 22:6                 Major source is oil-rich 
                                                                                                    fish, small amounts in  
            in meats and eggs 
________________________________________________________________________ 
       

PUFA’s have several different metabolic fates in the body.  They can be elongated, 

desaturated, shortened, or converted to other bio-active molecules like prostaglandins or 

leukotrines.  They can also direct glucose towards glycogen storage and reduce 



www.manaraa.com

36 

triglyceride synthesis from fatty acids, increase fatty acid oxidation and suppress hepatic 

lipogenesis (Clarke 2000).  Prostaglandins and leukotrines represent two of the four 

major classes of eicosanoids or signaling molecules.  They have a range of biological 

activities from influencing the contraction of smooth muscle and the aggregation of 

platelets to the participation in the pain and inflammatory responses (Sears 2005).   

Prostaglandins and leukotrienes are primarily pro-inflammatory eicosanoids that are 

derived from arachidonic acid (AA), an omega-6 fatty acid.  Fat cells, primarily in the 

abdominal region, sequester AA which over time leads to the production of pro-

inflammatory eicosanoids as well as cytokines interleukin-6 (IL-6) and tumor necrosis 

factor (TNF).  Both IL-6 and TNF enter the bloodstream and mount inflammatory 

responses.  It had been suggested that there is a correlation between insulin resistance and 

an increase in TNF (Sears 2005).  In one experimental animal study, rats were fed a 

standard or high fat (cafeteria) diet.  In a subgroup of cafeteria fed rats, EPA – an anti-

inflammatory precursor - was administered for 5 weeks.  Not only was a marginally 

lower body weight gain observed in the EPA subgroup, but EPA administration 

prevented the rise in TNF alpha observed in the cafeteria fed diet group not receiving 

EPA (Perez-Matute et al., 2007).   

Excess insulin can also increase the production of AA and IL-6.  Because omega-6 

fatty acids tend to be consumed to a greater extent than omega-3 fatty acids (in the U.S) 

most eicosanoids in the body are of the omega-6 type (Broadhurst 1997; Sears 2005).  

Since long chain omega-3 PUFA’s (>20 carbon atoms long) are essential, the body 

converts dietary short chain fatty acids into long chain fatty acids.  For instance, when 

linseed oil or rapeseed oil is consumed the alpha-linolenic acid within these oils can be 
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converted to EPA or DHA.  Epidemiological evidence in the U.S. suggests, however, that 

saturated fats and omega-6 PUFA’s from oil seeds (soybean, corn, sunflower, and 

safflower) are increasing and omega-3 are decreasing, which further reduces the amount 

of omega-3’s in the body’s cellular structures (Korotkova et al., 2002).  Furthermore, the 

short chain to long chain conversion may not be efficient enough to provide the necessary 

amounts of long chain fatty acids the body needs, which is especially true for infants in 

the early stages of life (Pella et al., 2004).   

Marine sources of non-white flesh, primarily pelagic fish which feed more in the 

surface layers of the ocean, contain higher levels of lipid (of the omega-3 type) in the 

flesh.  “White” fish such as cod, haddock, plaice, and whiting, for example, have lower 

lipid levels (0-2%) compared to the non-white fish such as herring, mackerel, sardines, 

tuna, salmon, and trout (5-15%).  These higher lipid levels in the non-white fish is the 

reason that they are referred to or characterized as “fatty fish”, “oily fish”, or “oil-rich 

fish”.  It is currently thought that microscopic algae, plankton, and planktonic crustacean, 

residing in the surface layers of the ocean, can form the long chain omega 3 

polyunsaturates, which are then passed up through the food chain (Innis and Kuhnlein 

1987).  A study published in 1987 investigated the fatty acid composition of marine 

mammals, polar bear, and caribou.  They discovered that marine mammals and polar bear 

contained substantial quantities of polyunsaturated fatty acids, which supports the food 

chain hypothesis (Innis and Kuhnlein 1987).  

EPA is the major omega-3 polyunsaturated fatty acid in most seafoods followed by 

DHA.  The remainder of the polyunsaturates, 22:5, 20:4, 18:3, and 18:4 are minor 

components of most fish.  EPA increases the production of anti-inflammatory eicosanoids 
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and partially inhibits the enzyme delta-5-desaturase which makes AA.  While DHA 

cannot directly be metabolized to eicosanoids, it can be retroconverted to EPA and is, 

therefore, indirectly related to eicosanoid balance in the body.  DHA is a major structural 

component of the brain, nerve, and retinal membranes where it can form up to 60% of the 

polyunsaturates present.  It can also alter a cell’s sensitivity to insulin by binding to 

transcription elements on DNA (Sears 2005).   

The critical periods for PUFA incorporation in brain tissue are likely the last trimester 

of gestation through infancy (around 2 years of age) and some scholars have postulated 

that an inadequate supply of these fatty acids during these periods, “…may cause a defect 

in the expression or function of insulin receptors resulting in type 2 diabetes” (Pella et al., 

2004).  Breast milk can be comprised of .1-.4% of fatty acids as DHA, which can be 

altered by dietary intakes of fish and fish oils.  The levels of PUFAs in maternal milk are 

nearly identical to maternal dietary PUFAs (Korotkova et al., 2002).  EPA, however, is 

virtually absent in breast milk.   

 

     Clinical, Epidemiological and Experimental Animal Studies and Polyunsaturated Fatty 

Acid Diets 

A large body of clinical, nutritional, and experimental animal research has reported 

on the health benefits associated with a diet rich in omega-3 fatty acids.  In 2005 

researchers Nettleton et al., compiled the data pertaining to omega-3 studies and reported 

that high intakes tend to be linked with lower incidences of CVD, hypertension, and T2D 

(Nettleton et al., 2005).  The researchers commented on health statistics in Iceland, in 

terms of coronary heart disease and T2D, and found that the data mirror the trend 
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observed in Southwest Alaska.  Despite the presence of T2D risk factors (including a 

high prevalence of overweight and obesity) in Iceland, disease prevalence was low.  

Researchers there noted a correlation between low T2D and high consumption of milk in 

Iceland, which contains more omega 3 PUFA’s than in other Nordic countries due to the 

presence of fish meal in the animal fodder (Vilbergsson et al., 1997).  The milk is also 

lower in omega 6 PUFA’s which increases the omega-3/omega-6 ratio.  In the review 

Nettleton et al. observed that the majority of these studies found a daily consumption of 

~3g/day of fish oils reduced triglyceride levels, increased high density lipoprotein levels, 

lowered blood pressure, and improved endothelial function (Nettleton et al., 2005).  

Endothelial function plays an important role in glucose balance. This barrier between the 

bloodstream and the organs can increase or decrease the efficiency of insulin transport 

across the endothelium, thereby enabling or inhibiting insulin to interact with cellular 

receptors (Sears 2005).  It is possible that n-3 PUFA’s play an important role in reducing 

CVD by lowering RLPs (remnant lipoproteins are highly atherogenic) and reducing 

coronary artery narrowing (Nettleton et al., 2005).   

Other studies not included in Nettleton’s review have reported on the correlation 

between omega-3s and certain biomarkers of disease. A study conducted in the 1980s 

examined the relationship between the types and quantities of nutrients consumed with 

the occurrence of impaired glucose tolerance (IGT), a “pre-diabetic” condition.  

According to the WHO IGT is defined as two hour glucose levels of 140 to 199 mg/dl 

after a 75 gram glucose load.  A diagnosis of IGT carries an increased risk for the future 

development of T2D.  After adjusting for age, BMI, and sex they found that moderate 

and high levels of physical activity reduced the prevalence of glucose intolerance.  Daily 
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salmon consumption also provided protection against glucose intolerance (Adler et al., 

1994).   

In 1994 researchers Adler et al., published a study conducted among 556 Eskimos 

and 110 Athabaskans over the age of 40 from 15 villages situated along either the Yukon 

or Kuskokwim rivers.  After reviewing self-administered questionnaires it was observed 

that daily seal oil and salmon consumption were associated with a lower prevalence of 

glucose intolerance after controlling for age, ethnicity, BMI, and sex.  Consumption of 

seal oil once a week or less significantly increased the chances of developing glucose 

intolerance as compared to individuals who ate it at least five times per week. (Adler et 

al., 1994).   

In a separate study published one year later Murphy et al. administered a food 

frequency questionnaire to Eskimo and Indian residents > 20 years old during the winter 

months.  Fifteen villages were studied and the majority of the villages were located along 

either the Yukon or Kuskokwim rivers.  Among Eskimos younger than 30 years of age, 

nonindigenous protein, low-nutrient density carbohydrate, and non-indigenous fat (i.e., 

processed snack foods) was more frequently consumed compared to Eskimos that were > 

60 years of age.  In addition, “Subjects with IGT reported a significantly more frequent 

use of nonindigenous protein and less seal oil, and they had a significantly higher 

prevalence of overweight” (Murphy et al., 1995).     

A separate clinical study observed that, “Forty-four Alaskan Inuit [Eskimo] with 

impaired glucose tolerance, excess weight, or obesity were counseled to eat fewer foods 

high in saturated fats, palmitic acid, and trans fatty acids, and more traditional foods, 



www.manaraa.com

41 

especially fish and marine animals [and]…after 4 years, no participants developed type 2 

diabetes, despite not losing weight” (Ebbesson 2002).   

In 1994 the Alaska Siberia project reported an association between normal glucose 

tolerance, impaired glucose tolerance, and T2D with serum fatty acid balance.  Those 

individuals with IGT and T2D had lower levels of plasma omega-3 fatty acids found in 

traditional foods and higher concentrations of fatty acids found in non-traditional foods 

like butter and bacon (Ebbesson et al., 1999).  In 2005 the same researchers measured 

plasma fatty acids in 447 Norton Sound Eskimos and found that they were highly 

correlated with increased intakes of dietary omega-3s.  Additionally, omega-3 

concentrations were highly correlated with high density lipoproteins (HDLs or “good 

cholesterol”) and inversely correlated with 2 hour insulin and glucose, triglycerides (TG) 

and diastolic blood pressure (Ebbesson et al., 2005).  Consistent with these findings, 

researchers examined the fatty acid profile in the Inuit population of Nunavik in northern 

Quebec.  Plasma omega-3s were positively associated with HDLs and inversely 

associated with TGs, but they did not find an association with blood pressure or plasma 

insulin (Dewailly et al., 2001).    

In early 2002 Barry Sears working with Princeton Medical Resources, administered a 

low-glycemic load diet and 1.6 grams per day of EPA and DHA to 68 T2D patients.  

After only 6 weeks, insulin, TG, HDL, glycated hemoglobin (HbA1c – a measure of 

blood glucose levels over approximately 3 months), and fat mass significantly (<.0001) 

improved.  

Similarly a 2007 CANHR study reported that the prevalence of metabolic syndrome 

in southwest Alaskan Eskimos was 14.7%, which is lower compared to NHANES III 
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findings of 23.9% for the general U.S. population with similar risk factors.  According to 

the International Diabetes Foundation, IDF, metabolic syndrome is a cluster of traits 

including abdominal obesity (an index of insulin resistance/glucose intolerance), 

dyslipidemia, and hypertension.  The presence of one or more of these traits can increase 

a person’s risk for developing T2D.  Boyer and researchers also noted that compared to 

the general U.S. population, HDLs in Eskimos were significantly higher, triglycerides 

significantly lower and fasting glucose levels were also lower, p=.065, levels that may be 

explained, at least in part by the effects of traditional Eskimo diets on these cardio-

metabolic markers.  Metabolic syndrome was higher in Yup’ik women compared to men, 

which may be explained by their larger waist circumferences.  

Experimental animal studies have complimented these epidemiological and clinical 

findings in humans.  Several studies have shown that a balanced fish oil diet compared to 

an olive oil or vegetable oil diet can improve levels of plasma triglycerides, cholesterol, 

insulin, and adipocyte insulin stimulated glucose transport in insulin resistant or diabetic 

rats (Fickova et al., 1998; Luo et al., 1996; Peyron-Caso et al., 2002).  It has also been 

shown that when rats consume a high fish oil diet they do not exhibit the sucrose-induced 

hyperinsulinemia and hypertriglyceridemia present in rats on olive oil and standard oil 

diets (Peyron-Caso et al., 2002).  In a study published in 1997, rats fed an n-3 diet - 

identical in macronutrient percentages to a comparable to an n-6 diet, showed an increase 

in lypolysis with diminished lipogenesis (Fickova et al., 1997).  Furthermore, smaller 

increments in weight gain over one week were observed in the n-3 diet.  In other words, 

the metabolic conditions associated with insulin resistance/T2D (i.e., hyperinsulinemia) 
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seem to improve when high levels fish oil, rather than olive oil or mixed oil diets, are 

consumed. 

In another study control and diabetic induced rats were fed a 27% (w/w) casein 

protein, 38% carbohydrate, and 35% fat (w-3 1% w/w) diet that either contained a high 

(2.0) or low (0.2) P/S content (ratios based on consumption by segments of the North 

American population).  While control animals showed an improvement in cardio-

metabolic function (i.e., insulin binding, and a significant increase in the rate of insulin-

stimulated glucose transport and lipogenesis) on the high P/S diet, diabetic animals did 

not show the same improvements in the amount of insulin working effectively as the rates 

of insulin-stimulated glucose transport and lipogenesis were significantly lower (p<.05) 

in diabetic animals compared to control animals.  Noteworthy, however, is that the high 

P/S diet for diabetic animals significantly improved (p<.05) the rates for all three 

functions.  It is possible that marked improvements in these rates for diabetic animals 

over what was observed could be manifested by a diet that contained higher amounts of 

w-3s (Field et al., 1990). 

There appears to be a strong correlation between dietary polyunsaturated fatty acids 

and adipocyte membrane composition, function, and fluidity, and these effects of dietary 

lipids are likely responsible for some of the metabolic (glucose and lipid) improvements 

mentioned above (Field et al., 1990; Luo et al., 1996).  The findings presented here 

suggest that metabolic changes can occur within the lifespan (and changes can be 

observed in as little as 1 week) in experimental animals and that dietary supplementation 

of n-3 fatty acids can improve insulin sensitivity and glucose transport. 



www.manaraa.com

44 

While many studies have found a strong correlation between improved insulin 

sensitivity and glucose uptake, decreased plasma triglycerides, and lower incidences of 

CVD and hypertension with large consumptions of omega-3s from fish oil, other studies 

have reported no such effect(s).  Several of the studies reviewed by Nettleton et al. did 

not support the correlation between omega-3 consumption and lower incidences of CVD 

and/or hypertension described in the literature.  In addition, a study conducted by the 

Alaska Siberia project in 1994 found that plasma omega-3s did not significantly differ 

among those Alaskan’s with CHD and those without.  While researchers noted that 

Alaskans, both with and without CHD, continued to consume high amounts of omega-3s 

these PUFAs did not protect against CHD when other risk factors were present.  These 

observations may, in part, be explained by other biological and nutritional phenomena 

occurring during prenatal life.   
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CHAPTER 4 

 

DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE 

The Role of the Intra-Uterine Environment on Post-natal Metabolism 

The Developmental Origins of Health and Disease (DOHaD) is a relatively new area 

of medical research that seeks to define the various role(s) of early life variables (e.g., 

maternal prenatal nutrition) in the developmental programming of disease.  For metabolic 

disorders, the idea that processes occurring in-utero can program post-natal metabolic 

profiles and shape certain phenotypic characteristics such as insulin resistance later in life 

is well established by research (Hales and Barker 1992; Benyshek et al., 2004; Ravelli et 

al., 1998).   

Retrospective Epidemiological Studies 

A study published in Diabetologia in 1992 by researchers Hales and Barker reported 

that among 5,654 men from Hertfordshire, England those with low birth weight and 

weight at one year of age possessed a three times higher death rate from ischaemic heart 

disease compared to normal birth weight babies.  These low birth weight infants, who 

were at such an increased risk of dying from CVD, were referred to as “thrifty-

phenotypes”.  The same researchers took 370 of those same men and administered a 75 

gram oral glucose tolerance test.  Those with relatively higher birth weights (>5.5 

pounds) and weights at one year of age (>18 pounds) tended to have fewer cases of 

impaired glucose tolerance and type 2 diabetes.  Similarly, low birth weight, but not 

lower weight at one year, was associated with hypertension in adulthood (Hales and 

Barker 1992).  This suggests that the development of certain conditions or types of 
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chronic disease in adulthood may arise according to when a certain “insult” occurred 

during development – a “critical window” – during gestational development or early 

infancy.  The potential for environmental triggers occurring during a critical window of 

development to influence or ‘program’ fetal or infant physiology and/or metabolism and 

predispose to a large array of diseases in adulthood has been examined extensively.   

A similar study to the one conducted by Hales and Barker was published in 1998.  

During the Dutch famine of 1944 to 1945, the western part of the Netherlands 

experienced a widespread famine.  Several hospitals in Amsterdam during this time 

collected and maintained detailed prenatal records and birth weights of the babies born in 

the facilities.  Researchers traced 5,425 people born in these Amsterdam hospitals and 

administered an OGTT to 702 of these men and women either conceived prior to, during, 

or after the famine.  Compared to their cohorts who were conceived prior to and after the 

famine, those individuals exposed to the famine prenatally (via their mother’s 

malnourished state) were more glucose intolerant, and glucose intolerance was even more 

pronounced in famine exposed babies who became obese in adult life.   In addition, 

glucose levels 2 hours after the OGTT were higher in men and women exposed to famine 

during mid to late gestation compared to early gestation (Ravelli et al., 1998).  While the 

specific environmental trigger(s) responsible for causing the observed effects in these 

individuals is not completely understood, these findings implicate an important role for 

maternal nutrition during pregnancy on metabolic processes in adulthood.  Dutch mothers 

who received rations from only 400 to 800 calories a day gave birth to babies that were 

unable to maintain glucose homeostasis later in life when substantially more calories 

became available.  While these and other retrospective human studies can illuminate the 
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importance of relative nutrient availability on fetal programming of adult metabolism, 

they do not address which nutrients are most critical and/or to what extent they can shape 

adult health outcomes. 

Several epidemiological DOHaD studies, however, have further refined which 

maternal nutrients consumed during pregnancy and lactation might influence early 

developmental programming and have also broadened the scope of inquiry to include the 

role of nutrient provisioning following birth (Gluckman and Hanson 2005). 

DOHaD Experimental Animal Studies on Obesity- Related Disorders 

Experimental animal studies have modeled the dietary transitions (i.e., maternal 

malnourishment/undernourishment during pregnancy followed by a relatively adequate 

caloric diet for the offspring post weaning) that occurred in certain human populations 

like the Pima Indians and the Dutch population in Amsterdam during the early to mid 

1900s.  Similar to the epidemiological findings in humans, rats that are undernourished 

(calorically low diets) prenatally and are weaned onto control diets (calorically adequate) 

tend to exhibit increased adiposity in adult life (Vickers et al., 2003).  Other studies have 

shown that rats undernourished during gestation had low birth weights, and a subsequent 

‘catch’ up in growth occurring the first 6 weeks was associated with obesity and glucose 

intolerance by six months of age (Jimenez-Chillaron et al., 2006).   

Maternal diet during pregnancy has also been associated with hypertension, 

hyperglycemia, and insulin resistance in the adult offspring.  Liang et al. (2009) 

demonstrated that mice fed a high fat (“fast food”) prenatal diet and a control diet post 

weaning, exhibited hypertension, hyperglycemia, and insulin resistance in adult life.  
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These and other studies have illuminated the importance of maternal diet during 

pregnancy on the developmental programming of metabolic traits.    

Intergenerational Transmission of Developmentally Programmed Traits 

Experimental animal studies have also been extended to understand the 

intergenerational transmission of fetally programmed traits.  Researchers from the 

University of Nevada in Las Vegas and Arizona State University used a rat model to 

examine the effects of isocaloric low protein diets (8%) during gestation on birthweight 

and insulin metabolism.  The offspring of rats undernourished in utero received a 

nutritionally adequate or high fat diet (overnourished) postweaning.  Birthweights and 

weights in adulthood for the experimental animals were significantly lower compared to 

control animals.  Fetally malnourished offspring consuming an adequate diet 

postweaning had significantly greater fasting insulin compared to control animals.  

Second generation (F2) experimental rats received the same diets as their parent and both 

adequate and high fat fed F2 generation rats had markedly high levels of insulin 

compared to controls and F1 generation rats.  In other words maternal diet (low protein) 

can program metabolism in such a way that when offspring are placed on a standard, or a 

high fat diet, they are insulin resistant in the second generation.  A second set of pups 

were over-nourished in utero, maintained on a high fat diet postweaning, and their 

offspring F2 received the same high fat diet.  All offspring over-nourished post weaning, 

regardless of prenatal diet, had significantly reduced fasting insulin sensitivity compared 

to controls (Benyshek et al., 2004).   

These same researchers used a similar experimental approach in a second study but 

extended it to include a third generation.  In this study female dams were protein 
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malnourished during pregnancy and lactation.  The first, second, and third generations 

from these protein malnourished dams all consumed an unrestricted nutritionally 

adequate diet postweaning, and during pregnancy and lactation.  The first generation 

showed reduced insulin secretion; the second generation was insulin resistant; and the 

third generation also showed impaired (although improved) insulin sensitivity (Benyshek 

et al., 2006).  Taken together, these results point to some intergenerational transmission 

of developmentally programmed traits, especially with respect to glucose/insulin 

metabolism. 

DOHaD and PUFA Intake 

 As discussed in Chapter 3, DHA and AA are major components of developing brain 

and retinal tissues.  Babies fed formula made with vegetable oils tend to have delayed 

neural development and significantly less DHA and total long chain polyunsaturated fatty 

acids (LCPUFAs) in the lipid bilayer of skeletal muscle compared to breast fed babies 

(Baur et al., 1998).   

DOHaD Experimental Animal Studies with Polyunsaturated Fatty Acids 

The consequences of the maternal nutritional milieu on fetal growth and development 

in humans have been modeled in animal studies.  Manipulation of dietary variables in 

highly controlled environments during pregnancy and lactation has broadened our 

understanding of the role maternal nutrition during these critical periods plays in shaping 

offspring metabolism.  In one study animals were given DHA immediately after birth 

during the perinatal period.  Compared to cohorts supplemented with DHA during the 

perinatal period, animals fed DHA after the perinatal period, or at weaning, had raised 

blood pressure (Weisinger et al., 2001).   
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Other animal studies have explored how pre-natal diets differing in amounts and/or 

ratios of PUFA’s affect insulin and glucose metabolism post-natally.  One study explored 

the effects on offspring of three maternal prenatal diets: 1) prenatal diets high in n-3 

(linseed oil); prenatal diets high in n-6 (sunflower oil), and 3) prenatal diets high in n-3 

and n-6 (soybean oil) (mixed diets).  Researchers then measured glucose, protein, 

cholesterol, serum leptin, and triacylglycerol levels of offspring at one and 3 weeks of 

age (Korotkova et al., 2005).  Leptin, a hormone produced in adipose tissue that controls 

food intake and energy expenditure, was lowest among animals whose mothers were fed 

the n-3 diet during pregnancy and lactation and highest in the “mixed” prenatal diet 

group.  There were no significant differences in serum glucose, triglycerides, protein or 

cholesterol among the 3 groups, although the n-3 group tended to have lower levels of 

triglycerides.  Adipocyte size, fat depots, body weight and length were significantly 

reduced in the n-3 group during the suckling period.   

In a later study researchers used these same methods but extended the project to 

include an analysis of long term effects.  At 28 weeks of age there were no differences in 

protein, glucose, or leptin, but triglycerides were higher in male rats fed a mixed diet.  

Fasting insulin was significantly higher in the mixed diet for both males and females.  

The researchers, however, did not use fish oil which altered the composition of EPA and 

DHA fatty acids in the diet.  As mentioned previously, it is thought that these fatty acids 

are critical factors in the potential programming of insulin metabolism.   

In another study Chapman et al. (2000) designed two diets, a 5g/100g fish oil diet and 

a 5g/100g mixed oil diet - meant to represent a typical UK diet - and pair fed them to rats 

during the last 2 weeks of gestation, lactation, and up to 5 weeks of age.  Animals were 
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given a mixed oil test meal at five and ten weeks of age to test triglycerides, cholesterol, 

and GIP (glucose-dependent insulinotrophic polypeptide) concentrations.  Results 

revealed more differences between age groups as opposed to between the two diet line 

groups suggesting that the age of the animal has more effect on the handling of a test 

meal challenge.  Animals gestated on the fish oil diet also had higher oxidative stress, 

which continued into adulthood as measured by catalase (an endogenous antioxidant 

enzyme) activity.  

While these experimental studies address the effects of fish oil diets during gestation, 

lactation, and early post-weaning life on adult metabolism, they do not account for other 

necessary fatty acids, specifically arachidonic acid, that when present with other PUFAs 

help to achieve metabolic homeostasis.   Prenatal diets that are low in arachidonic acid 

lead to decreased fetal growth and development (Amusquivar et al., 2000).  As previously 

mentioned, normal glucose and insulin homeostasis are thought to require both omega-3s 

from fish oils and omega-6s, like arachidonic acid dietary intake.  An excess of one or the 

other is not optimal for fetal growth and development or for metabolic processes in 

adulthood.  The ideal dietary concentrations appear to be reflected by the relative ratios 

of the fatty acids.   

Researchers from the University of San Pablo in Spain analyzed the consequences of 

low arachidonic acid and compared the effects of fish oil versus olive oil during 

pregnancy and lactation on offspring development, fatty acid profile, and vitamin E 

concentration.  Offspring whose mothers received the fish oil diet during pregnancy had a 

lower postnatal increase in body weight and body length, and delayed body and 

psychomotor maturation.  These results were also observed in the pups gestated on olive 



www.manaraa.com

52 

oil diet but cross fostered with a dam that received the fish oil diet during pregnancy.  

The fish oil fed group had higher levels of EPA and DHA in fetal plasma and liver 

contents and lower concentrations of arachidonic acid.  Researchers suggested that the 

lower levels of arachidonic acid were responsible for the delayed growth (Amusquivar et 

al., 2000).  The effects of the fish oils on these phenotypic traits may be related to dose.  

Fish oil was administered at 10% of the diet which is relatively high when compared to 

the high range of intake observed in humans.   

Several other studies have addressed the effects of fish oils on rats rendered diabetic 

during pregnancy.  Female rats were given a vegetable oil or EPAX diet (containing EPA 

and DHA -2.1% of the total diet) 15 days before mating and some of the female rats were 

subsequently made diabetic on the fifth day of pregnancy.  All of the macrosomic 

offspring of diabetic dams were hyperglycemic at birth regardless of maternal diet.  The 

n-3 diet did, however, significantly reduce the incidence of macrosomic pups, attenuated 

hyperlipidemia in macrosomic pups, and improved antioxidant status in both mothers and 

offspring.  Oxidative stress has been associated with diabetic patients and infants from 

mothers with gestational diabetes which is, in part, thought to be the result of high blood 

glucose.  

Postnatal High Fat Diets 

Experimental human and animal research has shown that serum insulin levels can 

change as a result of diet during the course of a lifetime.  More specifically, humans and 

rats that were otherwise normoglycemic and relatively insulin sensitive become insulin 

resistant and hyperinsulinaemic - when placed on a high saturated fat and high caloric 

diet as compared to diets that were low fat and complex in carbohydrates (Barnard et al., 
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1998).  Additionally, insulin sensitivity can be improved in insulin resistant, obese, type 2 

diabetic subjects/rats through a hypocaloric high protein diet (Belobradjic 2004; 

Farnsworth et al., 2003; Piatti et al., 1994; Zhao et al., 2000; Boden et al., 2005).  

Interestingly, contemporary Yup’ik Eskimos whose diet is high in refined sugars and 

relatively higher in saturated fatty acids do not appear to be hyperinsulinaemic which 

suggests that some other variable, perhaps the n-3s from sea mammals and fish, is 

protective against glucose and/or insulin imbalances. 

If nutrient composition and availability during gestation can program metabolism, 

and the ratio of omega-6/omega-3 in the diet can substantially affect components of lipid, 

glucose, and insulin metabolism then it is possible that a prenatal diet high in omega-3s 

could prevent particular imbalances in the offspring consuming a different post natal diet.  

The reason for the relatively healthy metabolic profile in Alaskan Yup’ik Eskimos may in 

part be attributed to their high intakes of omega-3s from fish oils.  Not only are omega-3s 

beneficial for glucose and insulin homeostasis when a high caloric and saturated fat is 

consumed post-natally, but the nutrients themselves and the corresponding effects on the 

endocrine system during pregnancy may provide an added protective effect for the 

developing fetus even if a substantial amount of omega-3 PUFAs are not consumed in its 

post-natal life.   
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CHAPTER 5 
 
 
 

METHODS 
 

Experimental Animals and Protocol Description 
 
Six adult female and two adult male Sprague-Dawley rats were obtained from 

Simonsen Laboratories, Inc. and housed in the University of Nevada, Las Vegas Animal 

Care Facility.  Males and females were housed separately in plastic cages (2 females per 

cage, and one male per cage) and were maintained on a control chow diet for 10 days 

while acclimating to the new environment (Table 2).  On the 10th day animals were 

randomly assigned to one of three test diets:  “Alaskan”, “Western”, or Control.  The 

Alaskan diet was custom formulated to model the ‘traditional’ Alaskan Yup’ik Eskimo 

dietary intakes.  Western diets were formulated to model the highly processed, ‘fast food’ 

diet associated with the ‘nutritional transition’ around the world.  Control diets were 

standard rat chows included for comparative purposes (See Table 3).  Two females were 

placed on each of the test diets; males consumed the same diet as their female cage-

mates. 
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Table 2.  Experimental Design 
______________________________________________________________________ 
              Maternal Diet Lines:                   F1 Generation:         # of 
                          Post-weaningdiets    offspring 
                       
                      Alaskan                               F1: Alaskan            (n = 5) 
                                                                                          Western            (n = 5) 
             Transitional      (n = 5) 
 
 
           Western                               F1: Alaskan            (n = 6) 
                                                                                          Western            (n = 6) 
             Transitional      (n = 6) 
 
           Control                                     F1: Alaskan            (n = 6) 
                                                                                          Western            (n = 6) 
             Transitional      (n = 6) 
 
 

 

Table 3.  Diet Composition 
        
Component                             Control            Alaskan        Transitional   Western 
 
      Calories provided by:            
      Protein                              28.507%          30.3%                16.9%         17.8% 
      Fat                                    13.496%           59.8%                33.9%        29.8% 
      Carbohydrate                    57.996%          10.0%                49.2%        52.3% 
 
 
         P/S                                         1              2.01                      1.25               .5 
        N6:N3                                   6.4            1.4                         4                   9.1 
________________________________________________________________________ 
      
 

Females were maintained on their assigned diet for seven days.  During this time, 

both food and water were supplied ad libitum.  On day 17, males and females on the 

same diet were combined and transferred to larger plastic cages to begin breeding.  The 

two dams consuming a Control diet were placed with a male breeder after the other 4 

experimental dams became pregnant.  Litter size was standardized for size and sex within 
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each prenatal diet group to nine pups per litter (Western prenatal: m=11, f=6; Control: 

m=7, f=11) using cross-fostering and culling techniques when the pups were 10 days of 

age.  (The two Alaskan-Prenatal diet litters were ‘standardized’ to two litters consisting 

of 7[m=5, f=2] and 8 [m=4, f=4] pups, respectively).  Pups received ear tags immediately 

prior to weaning at 21 days and were randomly assigned to an Alaskan, Western, or 

Transitional (i.e., mixed Alaskan-Western) postnatal diets at weaning (Table 2).  Both 

food and water were supplied ad libitum throughout the study.  Weights were recorded 

approximately every three days for 120 days.  On the 119th day animals were fasted 

overnight.  The following morning animals were restrained in a breathable tube, and 

lidocaine was applied (approximately one cm in length) to the end of the tail.  A very 

small piece of tail (~2mm) was cut off the end of the tail with a surgical scalpel and blood 

collected by “milking” the tail.  100ul of blood was collected in heparin coated capillary 

tubes for the glucose analysis, 600ul was collected in non-heparin capillary tubes for 

insulin analysis, and 2ul for HbA1c.  Blood collected for insulin analysis was spun at 

4000g at 4 degrees Celsius.  Plasma was removed and transferred to Eppendorf tubes and 

stored at -40 degrees Celsius until insulin analysis was performed.  The study was 

approved by the UNLV Institutional Animal Care and Use Committee (IACUC). 

Diets 
     Experimental diets differed in macronutrient composition, fat sources, and ratios 
 
of polyunsaturated to saturated fatty acids (Table 3).  While the obvious limitation of the 

diet compositions was the ability to exactly duplicate the fat sources characterizing the 

Yup’ik diets being modeled, careful consideration was made to choose sources that most 

closely approximated them. The Alaskan diet (Purina Testdiet, Greenfield, Indiana)  

differed slightly in mineral content for the breeders versus weanlings, but both contained 
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the same percentages of macronutrients, 30% protein, 60% fat, and 10% carbohydrate 

(Table 3).  The Alaskan diet for breeders contained slightly more selenium, calcium, iron 

and zinc as recommended by the commercial vendor nutritionist.  The sources of fat for 

the Alaskan diet were fish and soybean oil (Table 3).  The Transitional diet (Purina 

Testdiet, Greenfield, Indiana) contained 33.9% fat, 16.9% protein, and   49.2% 

carbohydrate with a mix of lard, fish and soybean oil.  A mix of corn, canola, soybean, 

safflower, coconut and fish oils, lard, beef tallow, milkfat, and cocoa butter were the fat 

sources for the Western diet (Harlan Teklad Madison, Wisconsin). All diets contained a 

standardized AIN-93 vitamin and mineral mixture except for the noted modification 

mentioned above.  Western and Transitional diets were kept at 4°C, Control diets at room 

temperature, and Alaskan diets at -40°C.  At the beginning of each week, a week’s 

allotment of Alaskan food was transferred to 4°C refrigeration.  To prevent oxidation of 

the Alaskan diet animals were provided with fresh food every two days.  Animals 

receiving the Western and Transitional diets were supplied with fresh food ~every three 

days and animals consuming the standard diet had a constant supply of food. 

Diets reflect traditional or Alaskan, Transitional, and Western intakes in 

terms of macronutrients (i.e. carbohydrate, protein, and fat) and fatty acid composition.  

The percentage of macronutrients used for the Alaskan diets are based on dietary surveys 

conducted in southwest Alaska during 1956-1961 (Heller and Scott 1967), 1978 (Knapp 

and Panruk 1978), and 1994 (Parkinson et al., 1994).  Western intakes are based on the 

USDA’s 1994-1996 Continuing Survey of Food Intakes by Individuals (CSFII).  

Polyunsaturated/saturated fatty acid and omega-6/omega-3 ratios in the two Yup’ik diets 

(Alaskan and Transitional) were adopted from data collected from a dietary survey 
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conducted in a coastal and inland village of southwest Alaska.  Ratios for the Western 

diet are based on the USDA’s 1994-1996 Continuing Survey of Food Intakes by 

Individuals (CSFII).   

Biomarker analyses 

          HbA1c analysis was performed to determine average plasma glucose levels during 

the preceding six to eight weeks.  HbA1c is reported as percent glycosylated hemoglobin.  

Blood collected for HbA1c was analyzed using the CLIA-waived Bayer DCA 2000 

Analyzer. Glucose concentrations were measured using the CLIA-waived Abaxis Piccolo 

Blood Chemistry Analyzer.  ZRT laboratories in Beaverton, Oregon analyzed insulin by 

ELISA.        

Statistical Approach. 
 
 Differences between mean fasting glucose levels, HOMA (insulin resistance), 

HbA1c, and BMI were tested using a one-way ANOVA after testing for normality.  

Differences between mean fasting insulin levels were tested using Kruskal-Wallis. Any 

outliers beyond 2 standard deviations were excluded from analysis.  A Levene’s test for 

homogeneity was conducted to determine if the spreads or variances of the populations 

were approximately equal.  LSD post hoc tests were performed to determine which 

groups differed from each other.  SPSS 16.0 software was used to analyze the data.  Data 

are reported as means + SD.  Statistical significance is defined as p<.05 with higher 

significance noted. 
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CHAPTER 6 
 
 

RESULTS 
 

Analysis of Data 
 

Using an experimental animal model, this study aimed to explore the potential 

protective metabolic effects of a prenatal diet modeled on traditional Yup’ik nutritional 

intakes, on blood glucose, insulin, and lipid levels in adult offspring. 

Effects of an Alaskan Prenatal Diet on Insulin Sensitivity 

Among rats consuming a Western diet postweaning, those whose mothers consumed an 

Alaskan diet during pregnancy and nursing, were significantly less insulin resistant (i.e. 

more insulin sensitive) as measured by Homeostatic Model of Insulin Resistance 

(HOMA) (p<.001) than animals whose mothers consumed a Western diet during 

pregnancy and while nursing (Figure 1). 

 

Figure 1.  Insulin Resistance as Measured by HOMA at120 days. 
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Table 4 shows the details of the metabolic markers of offspring who consumed a Western 

diet postweaning, but whose mothers consumed an Alaskan, Western, or Control diet 

during pregnancy. 

Table 4. Metabolic Markers for Males and Females.  Western Postweaning - Varying Prenatal Diets 

 
                        Alaskan-Western (a)      Western-Western (b)          Control-Western (c)          P           
______________________________________________________________________________________ 
 
HbA1c                3.44    +  .09     (5)            3.37    +   .10    (6)           3.25    +   .05     (6) 
Glucose mmol    7.82    +  .31     (5)            8.06    +   .99    (6)           8.39    +   1.15   (6) 
 Insulin   pmol    18.94  +  2.25   (4)            41.64  +   6.93  (5)           24.65  +   9.89   (6)                 *  
 HOMA            .95      +  .14     (4)            1.98    +   .76    (5)           1.22    +  .23      (6)  **(a)(b), **(b)(c) 
G/I                      .41      +  .04     (4)            .18      +   .01    (4)            .41     +  .10      (6)  **(a)(b), **(b)(c) 
BMI                    .60      +  .08     (5)            .60      +   .09    (6)            .54     +  .06      (6) 
Triglycerides      56.20  +  13.29 (5)            71.17  +   17.15 (6)           68.67 +  13.75  (6) 

 
Values are means  + SD with the number of rats given in parentheses 
 *  Diet lines significantly differ p<.05         
 **  Diet lines significantly differ p<.01 
 

     Among animals that consumed a Transitional diet postweaning, those whose mothers 

consumed an Alaskan diet during pregnancy and nursing were significantly (p=.01) more 

insulin sensitive, as measured by the glucose to insulin ratio than those whose mothers 

were fed a Western diet during pregnancy and nursing (Figure 2). 

 

Figure 2.  Insulin Sensitivity as Measured by Glucose mmol/Insulin pmol at 120 days. 
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Table 5 shows the details of the metabolic markers of offspring who consumed a 

Transitional diet postweaning, but whose mothers consumed an Alaskan, Western, or 

Control diet during pregnancy. 

Table 5. Metabolic Markers for Males and Females.  Transitional Postweaning - Varying Prenatal Diets 

 
                   Alaskan-Transitional (a)    Western-Transitional (b)   Control-Transitional (c)          P 
 _____________________________________________________________________________________ 
 
HbA1c               3.46     +   .11      (5)          3.42     +   .12     (6)            3.32    +   .10     (6) 
Glucose mmol   8.46     +   .47      (5)          8.29     +   11.61 (6)            8.04    +   .65     (6) 
 Insulin   pmol   23.44   +   11.24  (4)          33.03   +   10.40 (6)            36.03  +   12.98 (6)                   
 HOMA           1.29     +   .63      (4)          1.81     +   .77     (6)            2.02    +   .74     (5)  
 G/I                    .40       +   .12      (4)          .27       +   .06     (6)            .25      +   .13     (5)  *(a)(b), *(a)(c)          
 BMI                  .60       +   .08      (5)          .60       +   .09     (6)           .54       +   .06     (6) 
Triglycerides     65.80   +   18.75  (5)          64.67   +   8.64   (6)           53.00   +   12.32  (6) 

 
Values are means  + SD with the number of rats given in parentheses 
* Diet lines significantly differ p<.05         
** Diet lines significantly differ p<.01 
 

Effects of a Western Prenatal Diet on Insulin Resistance 

Among animals consuming an Alaskan diet postweaning, those whose mothers  

consumed a Western diet prenatally were significantly more insulin resistant than animals 

whose mothers consumed an Alaskan diet during pregnancy and nursing (Figure 3). 

 
Figure 3.  Insulin Resistance as Measured by HOMA at 120 days. 
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Table 6 shows the details of the metabolic markers of offspring who consumed an 

Alaskan diet postweaning, but whose mothers consumed an Alaskan, Western, or Control 

diet during pregnancy. 

Table 6. Metabolic Markers for Males and Females.  Alaskan Postweaning - Varying Prenatal Diets. 

 
                      Alaskan-Alaskan (a)     Western-Alaskan (b)       Control-Alaskan (c)                 P 

______________________________________________________________________________________ 
 

HbA1c                   3.40    +    .19   (5)         3.33   +   .08   (6)         3.33     +   .21   (6)                               
Glucosemmol        8.56    +    1.30 (5)         9.23   +   .49   (5)         8.57     +   .91   (6)     
Insulinpmol           20.58  +    6.18 (5)         33.18 +   1.47 (4)         20.05   +   3.1   (5)  
HOMA                  .99      +   .17    (4)         2.20   +    .75  (3)         1.09     +   .12   (5)        **(a)(b),** (b)(c) 
G/I                         .44      +   .12    (5)         .25     +    .07  (3)         .44       +   .10   (5)        **(a)(b),**(b)(c)     
BMI                      .61       +   .08    (5)        .60      +    .08  (6)         .58       +   .05   (6)      
Triglycerides        58.25   +  13.22 (5)        54.00  +    8.67(6)         56.83   + 16.70 (6)  
______________________________________________________________________________________ 
  
Values are means  + SD with the number of rats given in parentheses 
* Diet lines significantly differ p<.05         
** Diet lines significantly differ p<.01 
 

Lipids 

     Mean circulating triglycerides among animals who consumed Western diets post 

weaning, but whose mothers were fed an Alaskan diet while pregnant and nursing (56.2 

mg/dL) were 21 percent lower than those offspring whose mothers also consumed the 

Western diet during pregnancy and nursing (71.2 mg/dL).  Compared to the same 

Western prenatal/Western post-weaning diet animals (71.2 mg/dL), mean triglycerides 

were 18 percent lower among offspring whose mothers consumed an Alaskan diet during 

pregnancy and nursing, and who also consumed an Alaskan diet post weaning (58.2 

mg/dL).  Neither of these differences reached the .05 level of statistical significance, 

however. 
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Body weight 

      There were no significant differences in body weights on day 7 among offspring 

whose mother consumed an Alaskan, Western, or Control diet during pregnancy and 

nursing.  By day 21, offspring whose mothers consumed an Alaskan diet during 

pregnancy and nursing were significantly (p<.01) heavier compared to offspring whose 

mother consumed either a Western or Control diet during pregnancy and nursing (Figure 

4).   

 
Figure 4.  Average Body Weight at 21 d (Weaning) among Offspring of Mothers 

Consuming Alaskan, Western, and Control Diets during Pregnancy/Nursing 

 

Table 7 shows the average body weights at 7 and 21 days among offspring whose 

mothers consumed an Alaskan, Western, or Control diet during pregnancy and nursing.  
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Table 7.  Average Weight at 7 d, and 21 d (Weaning) for Males and Females among Offspring of Mothers 
Consuming an Alaskan, Western, or Control diet during Pregnancy/Nursing 

 
                 Alaskan                              Western                          Control                          P 
______________________________________________________________________________________ 

Day 

7             16.8  +  4.37(15)                16.44 + 2.03  (18)               17.2  +    .81(18) 
21 54.31 + 4.72 (15)                50.04 + 2.41 (18)                47.93 + 2.58 (18)        **(a)(b), **(a)(c) 
____________________________________________________________________________________ 
Values are means  + SD with the number of rats given in parentheses 
 * Diet lines significantly differ p<.05         
 ** Diet lines significantly differ p<.01 
 

The differences observed in body weights at day 21 washed out by 25 days and older.  

Relative growth over time (i.e. at 25 days and older) was similar among all three 

postnatal diet groups (Figures 5, 6, and 7).  Table 8 shows the average body weights 

among offspring 25-120 days old that consumed an Alaskan, Western, or Transitional 

postweaning diets whose mothers consumed varying prenatal diets. 
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Table 8. Body Weights for Offspring from 25 d to 120 d for Males and Females by Alaskan , Western and 
Transitional Postweaning - Varying Prenatal Diets 

 
            Alaskan-Alaskan (a)           Western-Alaskan (b)          Control-Alaskan (c)          P 
______________________________________________________________________________________ 

Day 
25 63.24   +  4.78      (5) 66.35   +   4.69    (6)  63.62   +  2.90     (6) 
49 196.76 +  34.86    (5) 181.95 +   21.77  (6)           175.1   +  18.88   (6) 
63 259.2    + 66.14    (5) 229.52 +   39.80  (6) 244.85  +  55.42   (6) 
70 273.92  + 69.74    (5) 252.00 +   50.62  (6) 263.57  +  57.03   (6) 
81 312.74  + 92.80    (5)          280.00 +  56.86  (6) 286.27  +  68.19   (6) 
109 353.34  + 107.96  (5) 329.6    +  73.29  (6) 322.98  +  80.05   (6) 
120 353.78  + 105.85  (5) 339.52  +  75.62  (6) 337.67  +  75.20   (6) 
 
______________________________________________________________________________________ 
 
              Alaskan-Western (a)           Western-Western (b)          Control-Western (c)          P 
 

 
25 64.94   +  9.58     (5)            66.55   +   8.13   (6)          62.78    +  3.18     (6) 
49 207.28 +  31.1     (5)            207.28  +  40.33 (6) 188.95  +  31.1     (6) 
63 267.72 +  72.1     (5)            265.45  +  62.76 (6) 236.18  +  52.07   (6) 
70 291.34 +  80.61   (5)   284.95  +  65.91 (6) 250.08  +  58.66   (6) 
81 316.56 +  90.27   (5)   311.85  +  72.07 (6) 270.18  +  69.51   (6) 
109 351.14 +  104.34 (5)   362.35  +  77.73 (6) 295.62  +  85.43   (6) 
120 354.34 +  105.69 (5)   365.38  +  84.14 (6) 303.48  +  91.44   (6) 
 
______________________________________________________________________________________ 
  
             Alaskan –Transitional (a)    Western-Transitional (b)     Control-Transitional (c)    P 
______________________________________________________________________________________ 
 25 63.16   +  5.58     (5)             66.55    +  6.24   (6)    68.60    +   3.80  (6) 
49 197.90 +   27.23   (5)             201.00  +  35.35 (6)           204.28  +  34.01 (6) 
63 261.24 +   57.75   (5)             269.35  +  57.23 (6)           263.65  +  51.09 (6) 
70 284.70 +   67.51   (5)             288.20  +  63.47 (6)           283.83  +  56.97 (6) 
81 310.04 +  75.46   (5)              323.75 +  73.79 (6)           307.90  +  60.47 (6) 
109 348.60 +   92.46   (5)              381.68 +  89.25 (6)           336.50  +  76.26 (6) 
120 347.88 +  97.14   (5)              388.15 +  92.78 (6)           347.88  +  80.70 (6)               
 

Values are means  + SD with the number of rats given in parentheses 
 * Diet lines significantly differ p<.05         
 ** Diet lines significantly differ p<.01 
      

Figures 5, 6, and 7 show growth over time after weaning among offspring consuming an 

Alaskan, Western, or Transitional postweaning diets whose mothers consumed varying 

prenatal diets. 
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Figure 5.  Growth Over Time among Males and Females Consuming an Alaskan 

Postweaning Diet. 

 

 

 
 
 

Figure 6.  Growth Over Time among Males and Females Consuming a Western 
Postweaning diet. 
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Figure 7.  Growth Over Time among Males and Females Consuming a Transitional 
Postweaning Diet. 
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CHAPTER 7 
 
 

DISCUSSION AND CONCLUSIONS 
 

Discussion of Results 

Maternal Diet and Insulin Resistance 

Previous experimental animal studies have demonstrated that the adult offspring of 

mothers who consume a diet high in saturated fat during pregnancy and lactation, possess 

high levels of fasting insulin and are insulin resistant (Liang et al., 2009).  The present 

study is consistent with this previous research in that adult offspring that consumed an 

Alaskan diet postweaning and whose mothers consumed a high (saturated) fat Western 

diet during pregnancy, were also insulin resistant.  This suggests that even diets known to 

improve metabolic health in adulthood (i.e., the Alaskan diet in the present study), was 

unable to compensate for the developmentally programmed effects of the high-saturated 

fat, prenatal Western diet.   

Maternal Diet and Insulin Sensitivity 

This present study also suggests that offspring insulin sensitivity in adulthood may be 

improved by a prenatal diet that is high in omega-3 PUFAs similar to that found in the 

traditional Yup’ik diet.  It is important to note that in the present animal study, the adult 

offspring whose mothers consumed Alaskan diets during pregnancy and lactation (which 

contained relatively higher percentages of fat compared to the Western diet) were not 

more insulin resistant than adult offspring whose mothers consumed a Western diet 

during pregnancy.  This suggests that although the Alaskan diet was even higher in 

overall fat content, the type of fat it contained in the Alaskan diet (i.e., higher amounts of 

omega-3s from fish oils), was a critical factor in the developmental programming of 
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insulin sensitivity.  This programming effect, likely as a result of the higher amounts of 

omega-3s might, in part, be responsible for maintaining blood glucose and insulin 

homeostasis in offspring consuming a different postweaning diet.  That is, even if a 

postweaning diet contains higher amounts of saturated and omega-6 fats, as in the 

Western diet, the adult offspring are ‘protected’ from the deleterious metabolic 

consequences (i.e., hyperglycemia, hyperinsulinemia) generally associated with a high 

saturated fat diet due to the relatively higher amounts of omega-3 PUFAs received during 

gestation.   

Findings from the present study did show a slight difference (although not statistically 

significant) in insulin sensitivity between adult offspring that consumed an Alaskan diet 

postweaning and whose mothers that consumed either an Alaskan diet or Control diet 

during pregnancy and lactation.  The Alaskan and Control diets mirrored one another in 

terms of relatively high protein percentages (~30%) however, and both diets were also 

higher in P/S fatty acids and lower in omega-6/omega-3 PUFAs compared to the Western 

diet.  It is possible, therefore, that the ‘protective’ effect on adult offspring insulin 

sensitivity observed in the Alaskan and Control prenatal diets are related to a diet that is 

high in omega-3s and protein.  These effects might also be the result of some ‘threshold’ 

effect related to fatty acid ratios provided by the maternal diet during pregnancy and 

lactation.  That is, once saturated fats and/or omega-6 PUFAs reach a certain percentage 

relative to PUFAs or omega-3s, glucose and insulin metabolic programming may shift 

towards insulin resistance.  In fact, it has been demonstrated that a high saturated fat 

‘junk food’ diet consumed during pregnancy leads to insulin resistance in adult offspring, 

despite postweaning diet (Liang et al., 2009). 
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Interestingly, the Control and Western diets also contained similar amounts of 

carbohydrates.  Thus, mothers consuming a Control or Western diet during pregnancy 

might have relatively higher amounts of circulating blood glucose (to which the 

developing fetus is exposed) than mothers consuming an Alaskan diet during pregnancy.  

Previous research has shown when maternal blood sugars are high during pregnancy, 

insulin resistance is likely to be developmentally programmed in their adult offspring.  

Alternatively, if pregnant females consuming the Alaskan diet during pregnancy 

maintained lower (but adequate) blood sugars (without suffering any nutritional 

deficiencies) other animal research has shown that their offspring would be much less 

likely to develop insulin resistance in adulthood (Benyshek et al., 2007).     

While these results do suggest that adult offspring whose mothers consumed Control 

diets during pregnancy were relatively insulin sensitive, they do not suggest that adult 

offspring whose mothers consumed Western diets were insulin sensitive.  In fact, the 

adult offspring whose mothers received a Western diet during pregnancy were insulin 

resistant, regardless of postweaning diet.  From a ‘thrifty-genotype’ inspired evolutionary 

perspective, one might expect that a low carbohydrate prenatal diet (e.g., Alaskan diet) 

would develop insulin resistance, as this would program a glucose-conserving 

metabolism that would ensure a sufficient supply of glucose (the brain’s sole energy 

source) in carbohydrate-poor environments (Ritenbaugh and Goodby 1989).  

Interestingly, results from the current study show the opposite effect.  Offspring whose 

mothers received the Alaskan diet prenatally were relatively insulin sensitive. 

Other research, however, has shown that the second generation (F2) adult offspring 

consuming an energy restricted diet postnatally whose mothers also consumed an energy 
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restricted diet during pregnancy and lactation, were insulin resistant (Benyshek et al., 

2008).  Given the findings in the present study, perhaps this means there is a narrow 

range of maternal blood glucose that programs for relative insulin sensitivity.  If 

maternal glucose is too low and glucose-conserving, insulin resistance is developmentally 

programmed [i.e., the ‘famine’ pathway].  If, on the other hand, maternal glucose is too 

high, then developmentally programmed metabolic traits that ultimately lead to insulin 

resistance, T2D in adulthood, although via a separate route [the ‘feast’ pathway], occurs. 

It is also possible that other developmental factors are contributing to these observed 

effects.  Perhaps offspring whose mothers are receiving a low carbohydrate (i.e., 

Alaskan) prenatal diet are developmentally programmed to optimize gluconeogenesis 

(the conversion of protein to glucose signaled by the release of glucagon), rather than 

insulin resistance.  If gluconeogenesis is developmentally optimized, then it is possible 

that offspring whose mothers are consuming an Alaskan diet during pregnancy are 

especially efficient at converting protein to glucose. If these same offspring are also 

consuming a (high fat, high carbohydrate) Western diet postweaning, the blood sugars in 

these animals should be especially high.  Under these circumstances, blood glucose (and 

insulin resistance) should have been highest in this study’s Alaskan prenatal-Western 

postweaning animals.  As a result, it is likely that some other factor (e.g., high amounts of 

prenatal dietary omega-3s, or overall higher prenatal dietary PUFAs, or an optimal 

maternal blood glucose level during gestation) is primarily responsible for the observed 

effect of developmentally programmed insulin sensitivity.   
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Body Weights 

Similar to what has been demonstrated in other experimental animals studies, the 

current study suggests that prenatal diet significantly affects growth during the perinatal 

period, but that postweaning diet does not significantly affect growth after weaning.  This 

is because rodents seem to have a particularly robust body weight set-point that resists 

efforts of researchers to intentionally overfeed.  It is not known from this study, however, 

at what developmental stage prenatal diet affects perinatal growth as body weights were 

not significantly different on day 7.  By day 21 pups whose mothers consumed an 

Alaskan diet were significantly heavier than pups whose mothers consumed either a 

Control or a Western diet.  Interestingly, these results are inconsistent with other studies 

that have examined the effects of prenatal diets that are high in omega-3s on body weight.  

These studies have generally found that a high omega-3 diet consumed during pregnancy 

leads to offspring that are lower in weight compared cohorts whose mothers consume a 

high omega-6 diet.  This suggests that some other component of an Alaskan diet might be 

contributing to growth differences during the perinatal period and/or that, once again, 

there are relatively narrow ranges of dietary intakes, in this case PUFA intakes, that 

program for postnatal growth trajectories.  

       

Conclusions 

The Traditional Yup’ik Diet and the Developmental Programming of Insulin Sensitivity 

While other experimental animals studies have modeled dietary transitions that have 

occurred in high T2D prevalence populations, and thereby provided support for a 

developmental origins model of the disease in these populations (Martin et al., 1999; 
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Benyshek et al., 2007) the current study modeled the dietary continuity and the slower 

nutritional transition occurring that has occurred in a unique low prevalence population to 

understand how dietary processes occurring in utero might protect the adult offspring 

from the metabolic consequences associated with high fat Western diets and obesogenic 

lifestyles. 

       The results of this study have helped to illuminate what may be part of the reason for 

current health paradox among contemporary Yupiit of southwestern Alaska. This study 

suggests that some dietary component(s) of a traditional Yup’ik diet consumed during 

pregnancy and lactation, confers a protective effect on glucose and insulin metabolism 

when a high saturated fat, Western diet is consumed postweaning.  It is possible that the 

low prevalence of T2D and Metabolic Syndrome among Yupiit can be explained by the 

continued reliance on traditional subsistence items in their current diets.   

Ideas for Future Research 

 As evidence for the developmental origins of health and disease continues to gain 

strength, it becomes imperative to further refine the role that various early life exposures 

and conditions, interacting at different stages of development, play in the development of 

chronic disease – especially those in which insulin resistance has been identified as the 

linchpin. There are many possibilities for future experimental animal studies that might 

address such pressing concerns.  One possibility is to use the same diet lines that were 

created in the current study, but to then cross foster (diet lines) at birth to determine the 

specific role the nursing period has on glucose, insulin, and lipid metabolism.  It is also 

important to understand what kind of multigenerational protective effects insulin-

sensitizing prenatal diets might have, especially among animals consuming high saturated 
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fat Western diets.  In other words, to what extent do insulin-sensitizing prenatal diets 

protect against insulin resistance in future generations, even if they continue to consume a 

high fat - Western diet.  

        Considering that this study found a potential T2D ‘protective’ (i.e., insulin-

sensitizing) effect on glucose and insulin metabolism when mothers consumed Yup’ik 

modeled Alaskan diet during pregnancy and nursing, the results raise another question.  

Does the timing matter?  Does an Alaskan diet consumed during the first, second, or third 

trimester of pregnancy have differential effects on the developmental programming of 

insulin metabolism in adult offspring?  

Education, Prevention, and Intervention 

Western culture today plays a predominant role in shaping/changing diet and lifestyle 

in developing and developed countries around the world.  This diffusion of cultural 

components (i.e., clothing, diet, leisure activities) can occur at a rapid pace and pose 

significant consequences for other societies, especially in economically developing 

countries.  Those poverty stricken communities, which are less likely to have access to 

health care and nutritionally dense foods, and health promoting resources, are at 

increased risk for both the development of T2D (as a result of their own personal prenatal 

history) and perpetuation of T2D.  As Western diet and lifestyles continue to influence 

countries around the world, the need for healthcare management and especially effective 

disease prevention programs in these countries becomes crucial. 

While other studies have sought to understand how T2D and other obesity related 

disorders are transmitted across generations, this study sought to shed light on how 

prenatal diets might protect against the development of metabolic traits associated with 
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these diseases.  While the results of the current study are preliminary and should be 

interpreted with caution, the current study suggests that carefully designed and monitored 

dietary interventions during the prenatal period may be able to offer significant protection 

to offspring from metabolic disorders in adult life. 
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